fuzz: Update FuzzedDataProvider.h from upstream (LLVM)

Upstream revision: 6d0488f75b/compiler-rt/include/fuzzer/FuzzedDataProvider.h

Changes:
* [compiler-rt] FuzzedDataProvider: add ConsumeData and method.
* [compiler-rt] Fix a typo in a comment in FuzzedDataProvider.h.
* [compiler-rt] Add ConsumeRandomLengthString() version without arguments.
* [compiler-rt] Refactor FuzzedDataProvider for better readability.
* [compiler-rt] FuzzedDataProvider: make linter happy.
* [compiler-rt] Mark FDP non-template methods inline to avoid ODR violations.
pull/826/head
practicalswift 4 years ago
parent f4ac48d30a
commit e3d2ba7c70

@ -34,272 +34,354 @@ class FuzzedDataProvider {
: data_ptr_(data), remaining_bytes_(size) {} : data_ptr_(data), remaining_bytes_(size) {}
~FuzzedDataProvider() = default; ~FuzzedDataProvider() = default;
// Returns a std::vector containing |num_bytes| of input data. If fewer than // See the implementation below (after the class definition) for more verbose
// |num_bytes| of data remain, returns a shorter std::vector containing all // comments for each of the methods.
// of the data that's left. Can be used with any byte sized type, such as
// char, unsigned char, uint8_t, etc. // Methods returning std::vector of bytes. These are the most popular choice
template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes) { // when splitting fuzzing input into pieces, as every piece is put into a
num_bytes = std::min(num_bytes, remaining_bytes_); // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
return ConsumeBytes<T>(num_bytes, num_bytes); // will be released automatically.
} template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes);
// Similar to |ConsumeBytes|, but also appends the terminator value at the end
// of the resulting vector. Useful, when a mutable null-terminated C-string is
// needed, for example. But that is a rare case. Better avoid it, if possible,
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
template <typename T> template <typename T>
std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0);
T terminator = 0) { template <typename T> std::vector<T> ConsumeRemainingBytes();
num_bytes = std::min(num_bytes, remaining_bytes_);
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
result.back() = terminator;
return result;
}
// Returns a std::string containing |num_bytes| of input data. Using this and
// |.c_str()| on the resulting string is the best way to get an immutable
// null-terminated C string. If fewer than |num_bytes| of data remain, returns
// a shorter std::string containing all of the data that's left.
std::string ConsumeBytesAsString(size_t num_bytes) {
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
"ConsumeBytesAsString cannot convert the data to a string.");
num_bytes = std::min(num_bytes, remaining_bytes_);
std::string result(
reinterpret_cast<const std::string::value_type *>(data_ptr_),
num_bytes);
Advance(num_bytes);
return result;
}
// Returns a number in the range [min, max] by consuming bytes from the // Methods returning strings. Use only when you need a std::string or a null
// input data. The value might not be uniformly distributed in the given // terminated C-string. Otherwise, prefer the methods returning std::vector.
// range. If there's no input data left, always returns |min|. |min| must std::string ConsumeBytesAsString(size_t num_bytes);
// be less than or equal to |max|. std::string ConsumeRandomLengthString(size_t max_length);
template <typename T> T ConsumeIntegralInRange(T min, T max) { std::string ConsumeRandomLengthString();
static_assert(std::is_integral<T>::value, "An integral type is required."); std::string ConsumeRemainingBytesAsString();
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
if (min > max) // Methods returning integer values.
abort(); template <typename T> T ConsumeIntegral();
template <typename T> T ConsumeIntegralInRange(T min, T max);
// Use the biggest type possible to hold the range and the result. // Methods returning floating point values.
uint64_t range = static_cast<uint64_t>(max) - min; template <typename T> T ConsumeFloatingPoint();
uint64_t result = 0; template <typename T> T ConsumeFloatingPointInRange(T min, T max);
size_t offset = 0;
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
remaining_bytes_ != 0) {
// Pull bytes off the end of the seed data. Experimentally, this seems to
// allow the fuzzer to more easily explore the input space. This makes
// sense, since it works by modifying inputs that caused new code to run,
// and this data is often used to encode length of data read by
// |ConsumeBytes|. Separating out read lengths makes it easier modify the
// contents of the data that is actually read.
--remaining_bytes_;
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
offset += CHAR_BIT;
}
// Avoid division by 0, in case |range + 1| results in overflow. // 0 <= return value <= 1.
if (range != std::numeric_limits<decltype(range)>::max()) template <typename T> T ConsumeProbability();
result = result % (range + 1);
return static_cast<T>(min + result); bool ConsumeBool();
}
// Returns a std::string of length from 0 to |max_length|. When it runs out of // Returns a value chosen from the given enum.
// input data, returns what remains of the input. Designed to be more stable template <typename T> T ConsumeEnum();
// with respect to a fuzzer inserting characters than just picking a random
// length and then consuming that many bytes with |ConsumeBytes|.
std::string ConsumeRandomLengthString(size_t max_length) {
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
// followed by anything else to the end of the string. As a result of this
// logic, a fuzzer can insert characters into the string, and the string
// will be lengthened to include those new characters, resulting in a more
// stable fuzzer than picking the length of a string independently from
// picking its contents.
std::string result;
// Reserve the anticipated capaticity to prevent several reallocations.
result.reserve(std::min(max_length, remaining_bytes_));
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next == '\\' && remaining_bytes_ != 0) {
next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next != '\\')
break;
}
result += next;
}
result.shrink_to_fit(); // Returns a value from the given array.
return result; template <typename T, size_t size> T PickValueInArray(const T (&array)[size]);
} template <typename T> T PickValueInArray(std::initializer_list<const T> list);
// Returns a std::vector containing all remaining bytes of the input data. // Writes data to the given destination and returns number of bytes written.
template <typename T> std::vector<T> ConsumeRemainingBytes() { size_t ConsumeData(void *destination, size_t num_bytes);
return ConsumeBytes<T>(remaining_bytes_);
}
// Returns a std::string containing all remaining bytes of the input data. // Reports the remaining bytes available for fuzzed input.
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string size_t remaining_bytes() { return remaining_bytes_; }
// object.
std::string ConsumeRemainingBytesAsString() {
return ConsumeBytesAsString(remaining_bytes_);
}
// Returns a number in the range [Type's min, Type's max]. The value might private:
// not be uniformly distributed in the given range. If there's no input data FuzzedDataProvider(const FuzzedDataProvider &) = delete;
// left, always returns |min|. FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
template <typename T> T ConsumeIntegral() {
return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
}
// Reads one byte and returns a bool, or false when no data remains. void CopyAndAdvance(void *destination, size_t num_bytes);
bool ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); }
// Returns a copy of the value selected from the given fixed-size |array|. void Advance(size_t num_bytes);
template <typename T, size_t size>
T PickValueInArray(const T (&array)[size]) {
static_assert(size > 0, "The array must be non empty.");
return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
}
template <typename T> template <typename T>
T PickValueInArray(std::initializer_list<const T> list) { std::vector<T> ConsumeBytes(size_t size, size_t num_bytes);
// TODO(Dor1s): switch to static_assert once C++14 is allowed.
if (!list.size())
abort();
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
}
// Returns an enum value. The enum must start at 0 and be contiguous. It must
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
template <typename T> T ConsumeEnum() {
static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
0, static_cast<uint32_t>(T::kMaxValue)));
}
// Returns a floating point number in the range [0.0, 1.0]. If there's no template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value);
// input data left, always returns 0.
template <typename T> T ConsumeProbability() {
static_assert(std::is_floating_point<T>::value,
"A floating point type is required.");
// Use different integral types for different floating point types in order const uint8_t *data_ptr_;
// to provide better density of the resulting values. size_t remaining_bytes_;
using IntegralType = };
typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
uint64_t>::type;
T result = static_cast<T>(ConsumeIntegral<IntegralType>()); // Returns a std::vector containing |num_bytes| of input data. If fewer than
result /= static_cast<T>(std::numeric_limits<IntegralType>::max()); // |num_bytes| of data remain, returns a shorter std::vector containing all
return result; // of the data that's left. Can be used with any byte sized type, such as
// char, unsigned char, uint8_t, etc.
template <typename T>
std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) {
num_bytes = std::min(num_bytes, remaining_bytes_);
return ConsumeBytes<T>(num_bytes, num_bytes);
}
// Similar to |ConsumeBytes|, but also appends the terminator value at the end
// of the resulting vector. Useful, when a mutable null-terminated C-string is
// needed, for example. But that is a rare case. Better avoid it, if possible,
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
template <typename T>
std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes,
T terminator) {
num_bytes = std::min(num_bytes, remaining_bytes_);
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
result.back() = terminator;
return result;
}
// Returns a std::vector containing all remaining bytes of the input data.
template <typename T>
std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() {
return ConsumeBytes<T>(remaining_bytes_);
}
// Returns a std::string containing |num_bytes| of input data. Using this and
// |.c_str()| on the resulting string is the best way to get an immutable
// null-terminated C string. If fewer than |num_bytes| of data remain, returns
// a shorter std::string containing all of the data that's left.
inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) {
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
"ConsumeBytesAsString cannot convert the data to a string.");
num_bytes = std::min(num_bytes, remaining_bytes_);
std::string result(
reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes);
Advance(num_bytes);
return result;
}
// Returns a std::string of length from 0 to |max_length|. When it runs out of
// input data, returns what remains of the input. Designed to be more stable
// with respect to a fuzzer inserting characters than just picking a random
// length and then consuming that many bytes with |ConsumeBytes|.
inline std::string
FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) {
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
// followed by anything else to the end of the string. As a result of this
// logic, a fuzzer can insert characters into the string, and the string
// will be lengthened to include those new characters, resulting in a more
// stable fuzzer than picking the length of a string independently from
// picking its contents.
std::string result;
// Reserve the anticipated capaticity to prevent several reallocations.
result.reserve(std::min(max_length, remaining_bytes_));
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next == '\\' && remaining_bytes_ != 0) {
next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next != '\\')
break;
}
result += next;
} }
// Returns a floating point value in the range [Type's lowest, Type's max] by result.shrink_to_fit();
// consuming bytes from the input data. If there's no input data left, always return result;
// returns approximately 0. }
template <typename T> T ConsumeFloatingPoint() {
return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(), // Returns a std::string of length from 0 to |remaining_bytes_|.
std::numeric_limits<T>::max()); inline std::string FuzzedDataProvider::ConsumeRandomLengthString() {
return ConsumeRandomLengthString(remaining_bytes_);
}
// Returns a std::string containing all remaining bytes of the input data.
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
// object.
inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() {
return ConsumeBytesAsString(remaining_bytes_);
}
// Returns a number in the range [Type's min, Type's max]. The value might
// not be uniformly distributed in the given range. If there's no input data
// left, always returns |min|.
template <typename T> T FuzzedDataProvider::ConsumeIntegral() {
return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
}
// Returns a number in the range [min, max] by consuming bytes from the
// input data. The value might not be uniformly distributed in the given
// range. If there's no input data left, always returns |min|. |min| must
// be less than or equal to |max|.
template <typename T>
T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) {
static_assert(std::is_integral<T>::value, "An integral type is required.");
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
if (min > max)
abort();
// Use the biggest type possible to hold the range and the result.
uint64_t range = static_cast<uint64_t>(max) - min;
uint64_t result = 0;
size_t offset = 0;
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
remaining_bytes_ != 0) {
// Pull bytes off the end of the seed data. Experimentally, this seems to
// allow the fuzzer to more easily explore the input space. This makes
// sense, since it works by modifying inputs that caused new code to run,
// and this data is often used to encode length of data read by
// |ConsumeBytes|. Separating out read lengths makes it easier modify the
// contents of the data that is actually read.
--remaining_bytes_;
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
offset += CHAR_BIT;
} }
// Returns a floating point value in the given range by consuming bytes from // Avoid division by 0, in case |range + 1| results in overflow.
// the input data. If there's no input data left, returns |min|. Note that if (range != std::numeric_limits<decltype(range)>::max())
// |min| must be less than or equal to |max|. result = result % (range + 1);
template <typename T> T ConsumeFloatingPointInRange(T min, T max) {
if (min > max) return static_cast<T>(min + result);
abort(); }
T range = .0; // Returns a floating point value in the range [Type's lowest, Type's max] by
T result = min; // consuming bytes from the input data. If there's no input data left, always
constexpr T zero(.0); // returns approximately 0.
if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) { template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() {
// The diff |max - min| would overflow the given floating point type. Use return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
// the half of the diff as the range and consume a bool to decide whether std::numeric_limits<T>::max());
// the result is in the first of the second part of the diff. }
range = (max / 2.0) - (min / 2.0);
if (ConsumeBool()) { // Returns a floating point value in the given range by consuming bytes from
result += range; // the input data. If there's no input data left, returns |min|. Note that
} // |min| must be less than or equal to |max|.
} else { template <typename T>
range = max - min; T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) {
if (min > max)
abort();
T range = .0;
T result = min;
constexpr T zero(.0);
if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
// The diff |max - min| would overflow the given floating point type. Use
// the half of the diff as the range and consume a bool to decide whether
// the result is in the first of the second part of the diff.
range = (max / 2.0) - (min / 2.0);
if (ConsumeBool()) {
result += range;
} }
} else {
return result + range * ConsumeProbability<T>(); range = max - min;
} }
// Reports the remaining bytes available for fuzzed input. return result + range * ConsumeProbability<T>();
size_t remaining_bytes() { return remaining_bytes_; } }
private: // Returns a floating point number in the range [0.0, 1.0]. If there's no
FuzzedDataProvider(const FuzzedDataProvider &) = delete; // input data left, always returns 0.
FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete; template <typename T> T FuzzedDataProvider::ConsumeProbability() {
static_assert(std::is_floating_point<T>::value,
void Advance(size_t num_bytes) { "A floating point type is required.");
if (num_bytes > remaining_bytes_)
// Use different integral types for different floating point types in order
// to provide better density of the resulting values.
using IntegralType =
typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
uint64_t>::type;
T result = static_cast<T>(ConsumeIntegral<IntegralType>());
result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
return result;
}
// Reads one byte and returns a bool, or false when no data remains.
inline bool FuzzedDataProvider::ConsumeBool() {
return 1 & ConsumeIntegral<uint8_t>();
}
// Returns an enum value. The enum must start at 0 and be contiguous. It must
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
template <typename T> T FuzzedDataProvider::ConsumeEnum() {
static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
return static_cast<T>(
ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue)));
}
// Returns a copy of the value selected from the given fixed-size |array|.
template <typename T, size_t size>
T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) {
static_assert(size > 0, "The array must be non empty.");
return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
}
template <typename T>
T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) {
// TODO(Dor1s): switch to static_assert once C++14 is allowed.
if (!list.size())
abort();
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
}
// Writes |num_bytes| of input data to the given destination pointer. If there
// is not enough data left, writes all remaining bytes. Return value is the
// number of bytes written.
// In general, it's better to avoid using this function, but it may be useful
// in cases when it's necessary to fill a certain buffer or object with
// fuzzing data.
inline size_t FuzzedDataProvider::ConsumeData(void *destination,
size_t num_bytes) {
num_bytes = std::min(num_bytes, remaining_bytes_);
CopyAndAdvance(destination, num_bytes);
return num_bytes;
}
// Private methods.
inline void FuzzedDataProvider::CopyAndAdvance(void *destination,
size_t num_bytes) {
std::memcpy(destination, data_ptr_, num_bytes);
Advance(num_bytes);
}
inline void FuzzedDataProvider::Advance(size_t num_bytes) {
if (num_bytes > remaining_bytes_)
abort();
data_ptr_ += num_bytes;
remaining_bytes_ -= num_bytes;
}
template <typename T>
std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) {
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
// The point of using the size-based constructor below is to increase the
// odds of having a vector object with capacity being equal to the length.
// That part is always implementation specific, but at least both libc++ and
// libstdc++ allocate the requested number of bytes in that constructor,
// which seems to be a natural choice for other implementations as well.
// To increase the odds even more, we also call |shrink_to_fit| below.
std::vector<T> result(size);
if (size == 0) {
if (num_bytes != 0)
abort(); abort();
data_ptr_ += num_bytes;
remaining_bytes_ -= num_bytes;
}
template <typename T>
std::vector<T> ConsumeBytes(size_t size, size_t num_bytes_to_consume) {
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
// The point of using the size-based constructor below is to increase the
// odds of having a vector object with capacity being equal to the length.
// That part is always implementation specific, but at least both libc++ and
// libstdc++ allocate the requested number of bytes in that constructor,
// which seems to be a natural choice for other implementations as well.
// To increase the odds even more, we also call |shrink_to_fit| below.
std::vector<T> result(size);
if (size == 0) {
if (num_bytes_to_consume != 0)
abort();
return result;
}
std::memcpy(result.data(), data_ptr_, num_bytes_to_consume);
Advance(num_bytes_to_consume);
// Even though |shrink_to_fit| is also implementation specific, we expect it
// to provide an additional assurance in case vector's constructor allocated
// a buffer which is larger than the actual amount of data we put inside it.
result.shrink_to_fit();
return result; return result;
} }
template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value) { CopyAndAdvance(result.data(), num_bytes);
static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
static_assert(!std::numeric_limits<TU>::is_signed, // Even though |shrink_to_fit| is also implementation specific, we expect it
"Source type must be unsigned."); // to provide an additional assurance in case vector's constructor allocated
// a buffer which is larger than the actual amount of data we put inside it.
// TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream. result.shrink_to_fit();
if (std::numeric_limits<TS>::is_modulo) return result;
return static_cast<TS>(value); }
// Avoid using implementation-defined unsigned to signer conversions. template <typename TS, typename TU>
// To learn more, see https://stackoverflow.com/questions/13150449. TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) {
if (value <= std::numeric_limits<TS>::max()) { static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
return static_cast<TS>(value); static_assert(!std::numeric_limits<TU>::is_signed,
} else { "Source type must be unsigned.");
constexpr auto TS_min = std::numeric_limits<TS>::min();
return TS_min + static_cast<char>(value - TS_min); // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
} if (std::numeric_limits<TS>::is_modulo)
return static_cast<TS>(value);
// Avoid using implementation-defined unsigned to signed conversions.
// To learn more, see https://stackoverflow.com/questions/13150449.
if (value <= std::numeric_limits<TS>::max()) {
return static_cast<TS>(value);
} else {
constexpr auto TS_min = std::numeric_limits<TS>::min();
return TS_min + static_cast<char>(value - TS_min);
} }
}
const uint8_t *data_ptr_;
size_t remaining_bytes_;
};
#endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_

Loading…
Cancel
Save