parent
2be4cd94f4
commit
bda33f98e2
@ -0,0 +1,92 @@
|
||||
// Copyright (c) 2014-2020 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <test/util/setup_common.h>
|
||||
#include <util/serfloat.h>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE(serfloat_tests, BasicTestingSetup)
|
||||
|
||||
namespace {
|
||||
|
||||
uint64_t TestDouble(double f) {
|
||||
uint64_t i = EncodeDouble(f);
|
||||
double f2 = DecodeDouble(i);
|
||||
if (std::isnan(f)) {
|
||||
// NaN is not guaranteed to round-trip exactly.
|
||||
BOOST_CHECK(std::isnan(f2));
|
||||
} else {
|
||||
// Everything else is.
|
||||
BOOST_CHECK(!std::isnan(f2));
|
||||
uint64_t i2 = EncodeDouble(f2);
|
||||
BOOST_CHECK_EQUAL(f, f2);
|
||||
BOOST_CHECK_EQUAL(i, i2);
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
BOOST_AUTO_TEST_CASE(double_serfloat_tests) {
|
||||
BOOST_CHECK_EQUAL(TestDouble(0.0), 0);
|
||||
BOOST_CHECK_EQUAL(TestDouble(-0.0), 0x8000000000000000);
|
||||
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::infinity()), 0x7ff0000000000000);
|
||||
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::infinity()), 0xfff0000000000000);
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
BOOST_CHECK_EQUAL(sizeof(double), 8);
|
||||
BOOST_CHECK_EQUAL(sizeof(uint64_t), 8);
|
||||
// Test extreme values
|
||||
TestDouble(std::numeric_limits<double>::min());
|
||||
TestDouble(-std::numeric_limits<double>::min());
|
||||
TestDouble(std::numeric_limits<double>::max());
|
||||
TestDouble(-std::numeric_limits<double>::max());
|
||||
TestDouble(std::numeric_limits<double>::lowest());
|
||||
TestDouble(-std::numeric_limits<double>::lowest());
|
||||
TestDouble(std::numeric_limits<double>::quiet_NaN());
|
||||
TestDouble(-std::numeric_limits<double>::quiet_NaN());
|
||||
TestDouble(std::numeric_limits<double>::signaling_NaN());
|
||||
TestDouble(-std::numeric_limits<double>::signaling_NaN());
|
||||
TestDouble(std::numeric_limits<double>::denorm_min());
|
||||
TestDouble(-std::numeric_limits<double>::denorm_min());
|
||||
// Test exact encoding: on currently supported platforms, EncodeDouble
|
||||
// should produce exactly the same as the in-memory representation for non-NaN.
|
||||
for (int j = 0; j < 1000; ++j) {
|
||||
// Iterate over 9 specific bits exhaustively; the others are chosen randomly.
|
||||
// These specific bits are the sign bit, and the 2 top and bottom bits of
|
||||
// exponent and mantissa in the IEEE754 binary64 format.
|
||||
for (int x = 0; x < 512; ++x) {
|
||||
uint64_t v = InsecureRandBits(64);
|
||||
v &= ~(uint64_t{1} << 0);
|
||||
if (x & 1) v |= (uint64_t{1} << 0);
|
||||
v &= ~(uint64_t{1} << 1);
|
||||
if (x & 2) v |= (uint64_t{1} << 1);
|
||||
v &= ~(uint64_t{1} << 50);
|
||||
if (x & 4) v |= (uint64_t{1} << 50);
|
||||
v &= ~(uint64_t{1} << 51);
|
||||
if (x & 8) v |= (uint64_t{1} << 51);
|
||||
v &= ~(uint64_t{1} << 52);
|
||||
if (x & 16) v |= (uint64_t{1} << 52);
|
||||
v &= ~(uint64_t{1} << 53);
|
||||
if (x & 32) v |= (uint64_t{1} << 53);
|
||||
v &= ~(uint64_t{1} << 61);
|
||||
if (x & 64) v |= (uint64_t{1} << 61);
|
||||
v &= ~(uint64_t{1} << 62);
|
||||
if (x & 128) v |= (uint64_t{1} << 62);
|
||||
v &= ~(uint64_t{1} << 63);
|
||||
if (x & 256) v |= (uint64_t{1} << 63);
|
||||
double f;
|
||||
memcpy(&f, &v, 8);
|
||||
uint64_t v2 = TestDouble(f);
|
||||
if (!std::isnan(f)) BOOST_CHECK_EQUAL(v, v2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
Loading…
Reference in new issue