|
|
@ -66,6 +66,26 @@ uint32_t PolyMod(const data& v)
|
|
|
|
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
|
|
|
|
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
|
|
|
|
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
|
|
|
|
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
|
|
|
|
// for `c`.
|
|
|
|
// for `c`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The following Sage code constructs the generator used:
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
// B = GF(2) # Binary field
|
|
|
|
|
|
|
|
// BP.<b> = B[] # Polynomials over the binary field
|
|
|
|
|
|
|
|
// F_mod = b**5 + b**3 + 1
|
|
|
|
|
|
|
|
// F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
|
|
|
|
|
|
|
|
// FP.<x> = F[] # Polynomials over GF(32)
|
|
|
|
|
|
|
|
// E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23)
|
|
|
|
|
|
|
|
// E.<e> = F.extension(E_mod) # GF(1024) extension field definition
|
|
|
|
|
|
|
|
// for p in divisors(E.order() - 1): # Verify e has order 1023.
|
|
|
|
|
|
|
|
// assert((e**p == 1) == (p % 1023 == 0))
|
|
|
|
|
|
|
|
// G = lcm([(e**i).minpoly() for i in range(997,1000)])
|
|
|
|
|
|
|
|
// print(G) # Print out the generator
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
// It demonstrates that g(x) is the least common multiple of the minimal polynomials
|
|
|
|
|
|
|
|
// of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024).
|
|
|
|
|
|
|
|
// That guarantees it is, in fact, the generator of a primitive BCH code with cycle
|
|
|
|
|
|
|
|
// length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details.
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t c = 1;
|
|
|
|
uint32_t c = 1;
|
|
|
|
for (const auto v_i : v) {
|
|
|
|
for (const auto v_i : v) {
|
|
|
|
// We want to update `c` to correspond to a polynomial with one extra term. If the initial
|
|
|
|
// We want to update `c` to correspond to a polynomial with one extra term. If the initial
|
|
|
@ -88,12 +108,21 @@ uint32_t PolyMod(const data& v)
|
|
|
|
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
|
|
|
|
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
|
|
|
|
c = ((c & 0x1ffffff) << 5) ^ v_i;
|
|
|
|
c = ((c & 0x1ffffff) << 5) ^ v_i;
|
|
|
|
|
|
|
|
|
|
|
|
// Finally, for each set bit n in c0, conditionally add {2^n}k(x):
|
|
|
|
// Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be
|
|
|
|
|
|
|
|
// computed using the following Sage code (continuing the code above):
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
// for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers.
|
|
|
|
|
|
|
|
// v = 0
|
|
|
|
|
|
|
|
// for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)):
|
|
|
|
|
|
|
|
// v = v*32 + coef.integer_representation()
|
|
|
|
|
|
|
|
// print("0x%x" % v)
|
|
|
|
|
|
|
|
//
|
|
|
|
if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
|
|
|
|
if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
|
|
|
|
if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
|
|
|
|
if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
|
|
|
|
if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
|
|
|
|
if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
|
|
|
|
if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
|
|
|
|
if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
|
|
|
|
if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
|
|
|
|
if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return c;
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -125,7 +154,8 @@ Encoding VerifyChecksum(const std::string& hrp, const data& values)
|
|
|
|
// PolyMod computes what value to xor into the final values to make the checksum 0. However,
|
|
|
|
// PolyMod computes what value to xor into the final values to make the checksum 0. However,
|
|
|
|
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid
|
|
|
|
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid
|
|
|
|
// list of values would result in a new valid list. For that reason, Bech32 requires the
|
|
|
|
// list of values would result in a new valid list. For that reason, Bech32 requires the
|
|
|
|
// resulting checksum to be 1 instead. In Bech32m, this constant was amended.
|
|
|
|
// resulting checksum to be 1 instead. In Bech32m, this constant was amended. See
|
|
|
|
|
|
|
|
// https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details.
|
|
|
|
const uint32_t check = PolyMod(Cat(ExpandHRP(hrp), values));
|
|
|
|
const uint32_t check = PolyMod(Cat(ExpandHRP(hrp), values));
|
|
|
|
if (check == EncodingConstant(Encoding::BECH32)) return Encoding::BECH32;
|
|
|
|
if (check == EncodingConstant(Encoding::BECH32)) return Encoding::BECH32;
|
|
|
|
if (check == EncodingConstant(Encoding::BECH32M)) return Encoding::BECH32M;
|
|
|
|
if (check == EncodingConstant(Encoding::BECH32M)) return Encoding::BECH32M;
|
|
|
|