|
|
|
@ -263,28 +263,10 @@ BOOST_AUTO_TEST_CASE(util_IsHex)
|
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
|
|
|
|
|
{
|
|
|
|
|
// Expected results for the determinstic seed.
|
|
|
|
|
const uint32_t exp_vals[11] = { 91632771U,1889679809U,3842137544U,3256031132U,
|
|
|
|
|
1761911779U, 489223532U,2692793790U,2737472863U,
|
|
|
|
|
2796262275U,1309899767U,840571781U};
|
|
|
|
|
// Expected 0s in rand()%(idx+2) for the determinstic seed.
|
|
|
|
|
const int exp_count[9] = {5013,3346,2415,1972,1644,1386,1176,1096,1009};
|
|
|
|
|
int i;
|
|
|
|
|
int count=0;
|
|
|
|
|
|
|
|
|
|
seed_insecure_rand();
|
|
|
|
|
|
|
|
|
|
//Does the non-determistic rand give us results that look too like the determinstic one?
|
|
|
|
|
for (i=0;i<10;i++)
|
|
|
|
|
{
|
|
|
|
|
int match = 0;
|
|
|
|
|
uint32_t rval = insecure_rand();
|
|
|
|
|
for (int j=0;j<11;j++)match |= rval==exp_vals[j];
|
|
|
|
|
count += match;
|
|
|
|
|
}
|
|
|
|
|
// sum(binomial(10,i)*(11/(2^32))^i*(1-(11/(2^32)))^(10-i),i,0,4) ~= 1-1/2^134.73
|
|
|
|
|
// So _very_ unlikely to throw a false failure here.
|
|
|
|
|
BOOST_CHECK(count<=4);
|
|
|
|
|
seed_insecure_rand(true);
|
|
|
|
|
|
|
|
|
|
for (int mod=2;mod<11;mod++)
|
|
|
|
|
{
|
|
|
|
@ -307,20 +289,6 @@ BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
|
|
|
|
|
BOOST_CHECK(count<=10000/mod+err);
|
|
|
|
|
BOOST_CHECK(count>=10000/mod-err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
seed_insecure_rand(true);
|
|
|
|
|
|
|
|
|
|
for (i=0;i<11;i++)
|
|
|
|
|
{
|
|
|
|
|
BOOST_CHECK_EQUAL(insecure_rand(),exp_vals[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int mod=2;mod<11;mod++)
|
|
|
|
|
{
|
|
|
|
|
count = 0;
|
|
|
|
|
for (i=0;i<10000;i++) count += insecure_rand()%mod==0;
|
|
|
|
|
BOOST_CHECK_EQUAL(count,exp_count[mod-2]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
|
|
|