better quicksort-pivot computation: 30% faster (measured with test program)

git-svn-id: https://svn.berlios.de/svnroot/repos/yacy/trunk@4588 6c8d7289-2bf4-0310-a012-ef5d649a1542
pull/1/head
orbiter 17 years ago
parent 3e44293f07
commit 11270d450e

@ -531,14 +531,14 @@ public class kelondroRowCollection {
qsort(p, R, 0, swapspace);
}
private final int partition(int L, int R, int S, byte[] swapspace) {
private final int partition(int L, int R, int S, byte[] swapspace) {
// returns {partition-point, new-S}
assert (L < R - 1);
assert (R - L >= isortlimit);
int p = L;
int q = R - 1;
int pivot = (L + R - 1) / 2;
int pivot = pivot(L, R, S, swapspace);
int oldpivot = -1;
byte[] compiledPivot = null;
if (this.rowdef.objectOrder instanceof kelondroBase64Order) {
@ -585,6 +585,67 @@ public class kelondroRowCollection {
return p;
}
private final int pivot(int L, int R, int S, byte[] swapspace) {
if ((S == 0) || (S < L)) {
// the collection has no ordering
// or
// the collection has an ordering, but this is not relevant for this pivot
// because the ordered zone is outside of ordering zone
int m = picMiddle(new int[]{L, (3 * L + R - 1) / 4, (L + R - 1) / 2, (3 * R - L - 1) / 4, R - 1}, 5);
assert L <= m;
assert m < R;
return m;
}
if (S < R) {
// the collection has an ordering
// and part of the ordered zone is inside the to-be-ordered zone
int m = picMiddle(new int[]{L + (S - L) / 3, L + 2 * (S - L) / 3, S, (S + R - 1) / 2, R - 1}, 5);
assert S <= m;
assert L <= m;
assert m < R;
return m;
}
// use the sorted set to find good pivot:
// the sort range is fully inside the sorted area:
// the middle element must be the best
// (hovever, it should be skipped because there is no point in sorting this)
return (L + R - 1) / 2;
}
private final int picMiddle(int[] list, int len) {
assert len % 2 == 1;
assert len <= list.length;
int cut = list.length / 2;
for (int i = 0; i < cut; i++) {remove(list, len, min(list, len)); len--;}
for (int i = 0; i < cut; i++) {remove(list, len, max(list, len)); len--;}
// the remaining element must be the middle element
assert len == 1;
return list[0];
}
private final void remove(int[] list, int len, int idx) {
if (idx == len - 1) return;
list[idx] = list[len - 1]; // shift last element to front
}
private final int min(int[] list, int len) {
assert len > 0;
int f = 0;
while (len-- > 0) {
if (compare(list[f], list[len]) > 0) f = len;
}
return f;
}
private final int max(int[] list, int len) {
assert len > 0;
int f = 0;
while (len-- > 0) {
if (compare(list[f], list[len]) < 0) f = len;
}
return f;
}
private final void isort(int L, int R, byte[] swapspace) {
for (int i = L + 1; i < R; i++)
for (int j = i; j > L && compare(j - 1, j) > 0; j--)

Loading…
Cancel
Save