gej_add_ge: rearrange algebra

There is zero functionality or opcount changes here; I need to do
this to make sure both R and M are computed before they are used,
since a future patch will replace either none or both of them.

Also compute r->y directly in terms of r->x, which again will be
used in a future patch.
pull/11871/head
Andrew Poelstra 10 years ago
parent 873a453d26
commit bcf2fcfd3a
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1

@ -463,7 +463,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t
static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
/* Operations: 7 mul, 5 sqr, 5 normalize, 17 mul_int/add/negate/cmov */ /* Operations: 7 mul, 5 sqr, 5 normalize, 17 mul_int/add/negate/cmov */
static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe_t zz, u1, u2, s1, s2, z, t, m, n, q, rr; secp256k1_fe_t zz, u1, u2, s1, s2, z, t, tt, m, n, q, rr;
int infinity; int infinity;
VERIFY_CHECK(!b->infinity); VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
@ -499,12 +499,12 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
z = a->z; /* z = Z = Z1*Z2 (8) */ z = a->z; /* z = Z = Z1*Z2 (8) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_mul(&tt, &u1, &u2); secp256k1_fe_negate(&tt, &tt, 1); /* t = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */ secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */ secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */
secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */ secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */
secp256k1_fe_add(&rr, &t); /* rr = R = T^2-U1*U2 (3) */
secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */ secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */
secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */ secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
@ -513,10 +513,10 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */ secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */
secp256k1_fe_normalize(&r->x); secp256k1_fe_normalize(&r->x);
secp256k1_fe_mul_int(&q, 3); /* q = -3*Q (6) */ t = r->x;
secp256k1_fe_mul_int(&t, 2); /* t = 2*R^2 (2) */ secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
secp256k1_fe_add(&t, &q); /* t = 2*R^2-3*Q (8) */ secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (8) */
secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*R^2-3*Q) (1) */ secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*x3 - Q) (1) */
secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */ secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */
secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */ secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */
secp256k1_fe_normalize_weak(&r->y); secp256k1_fe_normalize_weak(&r->y);

Loading…
Cancel
Save