|
|
|
// Copyright (c) 2018-2020 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#ifndef BITCOIN_SPAN_H
|
|
|
|
#define BITCOIN_SPAN_H
|
|
|
|
|
|
|
|
#include <type_traits>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
#define CONSTEXPR_IF_NOT_DEBUG
|
|
|
|
#define ASSERT_IF_DEBUG(x) assert((x))
|
|
|
|
#else
|
|
|
|
#define CONSTEXPR_IF_NOT_DEBUG constexpr
|
|
|
|
#define ASSERT_IF_DEBUG(x)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/** A Span is an object that can refer to a contiguous sequence of objects.
|
|
|
|
*
|
|
|
|
* It implements a subset of C++20's std::span.
|
|
|
|
*
|
|
|
|
* Things to be aware of when writing code that deals with Spans:
|
|
|
|
*
|
|
|
|
* - Similar to references themselves, Spans are subject to reference lifetime
|
|
|
|
* issues. The user is responsible for making sure the objects pointed to by
|
|
|
|
* a Span live as long as the Span is used. For example:
|
|
|
|
*
|
|
|
|
* std::vector<int> vec{1,2,3,4};
|
|
|
|
* Span<int> sp(vec);
|
|
|
|
* vec.push_back(5);
|
|
|
|
* printf("%i\n", sp.front()); // UB!
|
|
|
|
*
|
|
|
|
* may exhibit undefined behavior, as increasing the size of a vector may
|
|
|
|
* invalidate references.
|
|
|
|
*
|
|
|
|
* - One particular pitfall is that Spans can be constructed from temporaries,
|
|
|
|
* but this is unsafe when the Span is stored in a variable, outliving the
|
|
|
|
* temporary. For example, this will compile, but exhibits undefined behavior:
|
|
|
|
*
|
|
|
|
* Span<const int> sp(std::vector<int>{1, 2, 3});
|
|
|
|
* printf("%i\n", sp.front()); // UB!
|
|
|
|
*
|
|
|
|
* The lifetime of the vector ends when the statement it is created in ends.
|
|
|
|
* Thus the Span is left with a dangling reference, and using it is undefined.
|
|
|
|
*
|
|
|
|
* - Due to Span's automatic creation from range-like objects (arrays, and data
|
|
|
|
* types that expose a data() and size() member function), functions that
|
|
|
|
* accept a Span as input parameter can be called with any compatible
|
|
|
|
* range-like object. For example, this works:
|
|
|
|
*
|
|
|
|
* void Foo(Span<const int> arg);
|
|
|
|
*
|
|
|
|
* Foo(std::vector<int>{1, 2, 3}); // Works
|
|
|
|
*
|
|
|
|
* This is very useful in cases where a function truly does not care about the
|
|
|
|
* container, and only about having exactly a range of elements. However it
|
|
|
|
* may also be surprising to see automatic conversions in this case.
|
|
|
|
*
|
|
|
|
* When a function accepts a Span with a mutable element type, it will not
|
|
|
|
* accept temporaries; only variables or other references. For example:
|
|
|
|
*
|
|
|
|
* void FooMut(Span<int> arg);
|
|
|
|
*
|
|
|
|
* FooMut(std::vector<int>{1, 2, 3}); // Does not compile
|
|
|
|
* std::vector<int> baz{1, 2, 3};
|
|
|
|
* FooMut(baz); // Works
|
|
|
|
*
|
|
|
|
* This is similar to how functions that take (non-const) lvalue references
|
|
|
|
* as input cannot accept temporaries. This does not work either:
|
|
|
|
*
|
|
|
|
* void FooVec(std::vector<int>& arg);
|
|
|
|
* FooVec(std::vector<int>{1, 2, 3}); // Does not compile
|
|
|
|
*
|
|
|
|
* The idea is that if a function accepts a mutable reference, a meaningful
|
|
|
|
* result will be present in that variable after the call. Passing a temporary
|
|
|
|
* is useless in that context.
|
|
|
|
*/
|
|
|
|
template<typename C>
|
|
|
|
class Span
|
|
|
|
{
|
|
|
|
C* m_data;
|
|
|
|
std::size_t m_size;
|
|
|
|
|
|
|
|
public:
|
|
|
|
constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
|
|
|
|
|
|
|
|
/** Construct a span from a begin pointer and a size.
|
|
|
|
*
|
|
|
|
* This implements a subset of the iterator-based std::span constructor in C++20,
|
|
|
|
* which is hard to implement without std::address_of.
|
|
|
|
*/
|
|
|
|
template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
|
|
|
|
constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
|
|
|
|
|
|
|
|
/** Construct a span from a begin and end pointer.
|
|
|
|
*
|
|
|
|
* This implements a subset of the iterator-based std::span constructor in C++20,
|
|
|
|
* which is hard to implement without std::address_of.
|
|
|
|
*/
|
|
|
|
template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(end >= begin);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Implicit conversion of spans between compatible types.
|
|
|
|
*
|
|
|
|
* Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
|
|
|
|
* C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
|
|
|
|
* C++20 std::span constructor.
|
|
|
|
*
|
|
|
|
* For example this means that a Span<T> can be converted into a Span<const T>.
|
|
|
|
*/
|
|
|
|
template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
|
|
|
|
constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
|
|
|
|
|
|
|
|
/** Default copy constructor. */
|
|
|
|
constexpr Span(const Span&) noexcept = default;
|
|
|
|
|
|
|
|
/** Default assignment operator. */
|
|
|
|
Span& operator=(const Span& other) noexcept = default;
|
|
|
|
|
|
|
|
/** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
|
|
|
|
template <int N>
|
|
|
|
constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
|
|
|
|
|
|
|
|
/** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
|
|
|
|
*
|
|
|
|
* This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
|
|
|
|
*
|
|
|
|
* To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
|
|
|
|
* Note that this restriction does not exist when converting arrays or other Spans (see above).
|
|
|
|
*/
|
|
|
|
template <typename V, typename std::enable_if<(std::is_const<C>::value || std::is_lvalue_reference<V>::value) && std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value && std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, int>::type = 0>
|
|
|
|
constexpr Span(V&& v) noexcept : m_data(v.data()), m_size(v.size()) {}
|
|
|
|
|
|
|
|
constexpr C* data() const noexcept { return m_data; }
|
|
|
|
constexpr C* begin() const noexcept { return m_data; }
|
|
|
|
constexpr C* end() const noexcept { return m_data + m_size; }
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() > 0);
|
|
|
|
return m_data[0];
|
|
|
|
}
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() > 0);
|
|
|
|
return m_data[m_size - 1];
|
|
|
|
}
|
|
|
|
constexpr std::size_t size() const noexcept { return m_size; }
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() > pos);
|
|
|
|
return m_data[pos];
|
|
|
|
}
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() >= offset);
|
|
|
|
return Span<C>(m_data + offset, m_size - offset);
|
|
|
|
}
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() >= offset + count);
|
|
|
|
return Span<C>(m_data + offset, count);
|
|
|
|
}
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() >= count);
|
|
|
|
return Span<C>(m_data, count);
|
|
|
|
}
|
|
|
|
CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
|
|
|
|
{
|
|
|
|
ASSERT_IF_DEBUG(size() >= count);
|
|
|
|
return Span<C>(m_data + m_size - count, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
|
|
|
|
friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
|
|
|
|
friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
|
|
|
|
friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
|
|
|
|
friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
|
|
|
|
friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
|
|
|
|
|
|
|
|
template <typename O> friend class Span;
|
|
|
|
};
|
|
|
|
|
|
|
|
// MakeSpan helps constructing a Span of the right type automatically.
|
|
|
|
/** MakeSpan for arrays: */
|
|
|
|
template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
|
|
|
|
/** MakeSpan for temporaries / rvalue references, only supporting const output. */
|
|
|
|
template <typename V> constexpr auto MakeSpan(V&& v) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); }
|
|
|
|
/** MakeSpan for (lvalue) references, supporting mutable output. */
|
|
|
|
template <typename V> constexpr auto MakeSpan(V& v) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; }
|
|
|
|
|
|
|
|
/** Pop the last element off a span, and return a reference to that element. */
|
|
|
|
template <typename T>
|
|
|
|
T& SpanPopBack(Span<T>& span)
|
|
|
|
{
|
|
|
|
size_t size = span.size();
|
|
|
|
ASSERT_IF_DEBUG(size > 0);
|
|
|
|
T& back = span[size - 1];
|
|
|
|
span = Span<T>(span.data(), size - 1);
|
|
|
|
return back;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|