|
|
|
// Copyright (c) 2018-2020 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#ifndef BITCOIN_SPAN_H
|
|
|
|
#define BITCOIN_SPAN_H
|
|
|
|
|
|
|
|
#include <type_traits>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
/** A Span is an object that can refer to a contiguous sequence of objects.
|
|
|
|
*
|
|
|
|
* It implements a subset of C++20's std::span.
|
|
|
|
*/
|
|
|
|
template<typename C>
|
|
|
|
class Span
|
|
|
|
{
|
|
|
|
C* m_data;
|
|
|
|
std::ptrdiff_t m_size;
|
|
|
|
|
|
|
|
public:
|
|
|
|
constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
|
|
|
|
constexpr Span(C* data, std::ptrdiff_t size) noexcept : m_data(data), m_size(size) {}
|
|
|
|
constexpr Span(C* data, C* end) noexcept : m_data(data), m_size(end - data) {}
|
|
|
|
|
|
|
|
/** Implicit conversion of spans between compatible types.
|
|
|
|
*
|
|
|
|
* Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
|
|
|
|
* C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
|
|
|
|
* C++20 std::span constructor.
|
|
|
|
*
|
|
|
|
* For example this means that a Span<T> can be converted into a Span<const T>.
|
|
|
|
*/
|
|
|
|
template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
|
|
|
|
constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
|
|
|
|
|
|
|
|
/** Default copy constructor. */
|
|
|
|
constexpr Span(const Span&) noexcept = default;
|
|
|
|
|
|
|
|
/** Default assignment operator. */
|
|
|
|
Span& operator=(const Span& other) noexcept = default;
|
|
|
|
|
|
|
|
constexpr C* data() const noexcept { return m_data; }
|
|
|
|
constexpr C* begin() const noexcept { return m_data; }
|
|
|
|
constexpr C* end() const noexcept { return m_data + m_size; }
|
|
|
|
constexpr C& front() const noexcept { return m_data[0]; }
|
|
|
|
constexpr C& back() const noexcept { return m_data[m_size - 1]; }
|
|
|
|
constexpr std::ptrdiff_t size() const noexcept { return m_size; }
|
|
|
|
constexpr C& operator[](std::ptrdiff_t pos) const noexcept { return m_data[pos]; }
|
|
|
|
|
|
|
|
constexpr Span<C> subspan(std::ptrdiff_t offset) const noexcept { return Span<C>(m_data + offset, m_size - offset); }
|
|
|
|
constexpr Span<C> subspan(std::ptrdiff_t offset, std::ptrdiff_t count) const noexcept { return Span<C>(m_data + offset, count); }
|
|
|
|
constexpr Span<C> first(std::ptrdiff_t count) const noexcept { return Span<C>(m_data, count); }
|
|
|
|
constexpr Span<C> last(std::ptrdiff_t count) const noexcept { return Span<C>(m_data + m_size - count, count); }
|
|
|
|
|
|
|
|
friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
|
|
|
|
friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
|
|
|
|
friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
|
|
|
|
friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
|
|
|
|
friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
|
|
|
|
friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
|
|
|
|
|
|
|
|
template <typename O> friend class Span;
|
|
|
|
};
|
|
|
|
|
|
|
|
/** Create a span to a container exposing data() and size().
|
|
|
|
*
|
|
|
|
* This correctly deals with constness: the returned Span's element type will be
|
|
|
|
* whatever data() returns a pointer to. If either the passed container is const,
|
|
|
|
* or its element type is const, the resulting span will have a const element type.
|
|
|
|
*
|
|
|
|
* std::span will have a constructor that implements this functionality directly.
|
|
|
|
*/
|
|
|
|
template<typename A, int N>
|
|
|
|
constexpr Span<A> MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
|
|
|
|
|
|
|
|
template<typename V>
|
|
|
|
constexpr Span<typename std::remove_pointer<decltype(std::declval<V>().data())>::type> MakeSpan(V& v) { return Span<typename std::remove_pointer<decltype(std::declval<V>().data())>::type>(v.data(), v.size()); }
|
|
|
|
|
|
|
|
/** Pop the last element off a span, and return a reference to that element. */
|
|
|
|
template <typename T>
|
|
|
|
T& SpanPopBack(Span<T>& span)
|
|
|
|
{
|
|
|
|
size_t size = span.size();
|
|
|
|
assert(size > 0);
|
|
|
|
T& back = span[size - 1];
|
|
|
|
span = Span<T>(span.data(), size - 1);
|
|
|
|
return back;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|