You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
litecoin/src/netbase.cpp

757 lines
26 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <netbase.h>
#include <compat.h>
#include <sync.h>
#include <tinyformat.h>
#include <util/sock.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <util/system.h>
#include <util/time.h>
#include <atomic>
#include <chrono>
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#ifndef WIN32
#include <fcntl.h>
#else
#include <codecvt>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
// Settings
static Mutex g_proxyinfo_mutex;
static proxyType proxyInfo[NET_MAX] GUARDED_BY(g_proxyinfo_mutex);
static proxyType nameProxy GUARDED_BY(g_proxyinfo_mutex);
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
bool fNameLookup = DEFAULT_NAME_LOOKUP;
// Need ample time for negotiation for very slow proxies such as Tor (milliseconds)
int g_socks5_recv_timeout = 20 * 1000;
static std::atomic<bool> interruptSocks5Recv(false);
std::vector<CNetAddr> WrappedGetAddrInfo(const std::string& name, bool allow_lookup)
{
addrinfo ai_hint{};
// We want a TCP port, which is a streaming socket type
ai_hint.ai_socktype = SOCK_STREAM;
ai_hint.ai_protocol = IPPROTO_TCP;
// We don't care which address family (IPv4 or IPv6) is returned
ai_hint.ai_family = AF_UNSPEC;
// If we allow lookups of hostnames, use the AI_ADDRCONFIG flag to only
// return addresses whose family we have an address configured for.
//
// If we don't allow lookups, then use the AI_NUMERICHOST flag for
// getaddrinfo to only decode numerical network addresses and suppress
// hostname lookups.
ai_hint.ai_flags = allow_lookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
addrinfo* ai_res{nullptr};
const int n_err{getaddrinfo(name.c_str(), nullptr, &ai_hint, &ai_res)};
if (n_err != 0) {
return {};
}
// Traverse the linked list starting with ai_trav.
addrinfo* ai_trav{ai_res};
std::vector<CNetAddr> resolved_addresses;
while (ai_trav != nullptr) {
if (ai_trav->ai_family == AF_INET) {
assert(ai_trav->ai_addrlen >= sizeof(sockaddr_in));
resolved_addresses.emplace_back(reinterpret_cast<sockaddr_in*>(ai_trav->ai_addr)->sin_addr);
}
if (ai_trav->ai_family == AF_INET6) {
assert(ai_trav->ai_addrlen >= sizeof(sockaddr_in6));
const sockaddr_in6* s6{reinterpret_cast<sockaddr_in6*>(ai_trav->ai_addr)};
resolved_addresses.emplace_back(s6->sin6_addr, s6->sin6_scope_id);
}
ai_trav = ai_trav->ai_next;
}
freeaddrinfo(ai_res);
return resolved_addresses;
}
DNSLookupFn g_dns_lookup{WrappedGetAddrInfo};
enum Network ParseNetwork(const std::string& net_in) {
std::string net = ToLower(net_in);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "onion") return NET_ONION;
if (net == "tor") {
LogPrintf("Warning: net name 'tor' is deprecated and will be removed in the future. You should use 'onion' instead.\n");
return NET_ONION;
}
if (net == "i2p") {
return NET_I2P;
}
return NET_UNROUTABLE;
}
std::string GetNetworkName(enum Network net)
{
switch (net) {
case NET_UNROUTABLE: return "not_publicly_routable";
case NET_IPV4: return "ipv4";
case NET_IPV6: return "ipv6";
case NET_ONION: return "onion";
case NET_I2P: return "i2p";
case NET_CJDNS: return "cjdns";
case NET_INTERNAL: return "internal";
case NET_MAX: assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
std::vector<std::string> GetNetworkNames(bool append_unroutable)
{
std::vector<std::string> names;
for (int n = 0; n < NET_MAX; ++n) {
const enum Network network{static_cast<Network>(n)};
if (network == NET_UNROUTABLE || network == NET_CJDNS || network == NET_INTERNAL) continue;
names.emplace_back(GetNetworkName(network));
}
if (append_unroutable) {
names.emplace_back(GetNetworkName(NET_UNROUTABLE));
}
return names;
}
static bool LookupIntern(const std::string& name, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
vIP.clear();
if (!ValidAsCString(name)) {
return false;
}
{
CNetAddr addr;
// From our perspective, onion addresses are not hostnames but rather
// direct encodings of CNetAddr much like IPv4 dotted-decimal notation
// or IPv6 colon-separated hextet notation. Since we can't use
// getaddrinfo to decode them and it wouldn't make sense to resolve
// them, we return a network address representing it instead. See
// CNetAddr::SetSpecial(const std::string&) for more details.
if (addr.SetSpecial(name)) {
vIP.push_back(addr);
return true;
}
}
for (const CNetAddr& resolved : dns_lookup_function(name, fAllowLookup)) {
if (nMaxSolutions > 0 && vIP.size() >= nMaxSolutions) {
break;
}
/* Never allow resolving to an internal address. Consider any such result invalid */
if (!resolved.IsInternal()) {
vIP.push_back(resolved);
}
}
return (vIP.size() > 0);
}
bool LookupHost(const std::string& name, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::string strHost = name;
if (strHost.empty())
return false;
if (strHost.front() == '[' && strHost.back() == ']') {
strHost = strHost.substr(1, strHost.size() - 2);
}
return LookupIntern(strHost, vIP, nMaxSolutions, fAllowLookup, dns_lookup_function);
}
bool LookupHost(const std::string& name, CNetAddr& addr, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::vector<CNetAddr> vIP;
LookupHost(name, vIP, 1, fAllowLookup, dns_lookup_function);
if(vIP.empty())
return false;
addr = vIP.front();
return true;
}
bool Lookup(const std::string& name, std::vector<CService>& vAddr, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
{
if (name.empty() || !ValidAsCString(name)) {
return false;
}
uint16_t port{portDefault};
std::string hostname;
SplitHostPort(name, port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname, vIP, nMaxSolutions, fAllowLookup, dns_lookup_function);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const std::string& name, CService& addr, uint16_t portDefault, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::vector<CService> vService;
bool fRet = Lookup(name, vService, portDefault, fAllowLookup, 1, dns_lookup_function);
if (!fRet)
return false;
addr = vService[0];
return true;
}
CService LookupNumeric(const std::string& name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return {};
}
CService addr;
// "1.2:345" will fail to resolve the ip, but will still set the port.
// If the ip fails to resolve, re-init the result.
if(!Lookup(name, addr, portDefault, false, dns_lookup_function))
addr = CService();
return addr;
}
/** SOCKS version */
enum SOCKSVersion: uint8_t {
SOCKS4 = 0x04,
SOCKS5 = 0x05
};
/** Values defined for METHOD in RFC1928 */
enum SOCKS5Method: uint8_t {
NOAUTH = 0x00, //!< No authentication required
GSSAPI = 0x01, //!< GSSAPI
USER_PASS = 0x02, //!< Username/password
NO_ACCEPTABLE = 0xff, //!< No acceptable methods
};
/** Values defined for CMD in RFC1928 */
enum SOCKS5Command: uint8_t {
CONNECT = 0x01,
BIND = 0x02,
UDP_ASSOCIATE = 0x03
};
/** Values defined for REP in RFC1928 */
enum SOCKS5Reply: uint8_t {
SUCCEEDED = 0x00, //!< Succeeded
GENFAILURE = 0x01, //!< General failure
NOTALLOWED = 0x02, //!< Connection not allowed by ruleset
NETUNREACHABLE = 0x03, //!< Network unreachable
HOSTUNREACHABLE = 0x04, //!< Network unreachable
CONNREFUSED = 0x05, //!< Connection refused
TTLEXPIRED = 0x06, //!< TTL expired
CMDUNSUPPORTED = 0x07, //!< Command not supported
ATYPEUNSUPPORTED = 0x08, //!< Address type not supported
};
/** Values defined for ATYPE in RFC1928 */
enum SOCKS5Atyp: uint8_t {
IPV4 = 0x01,
DOMAINNAME = 0x03,
IPV6 = 0x04,
};
/** Status codes that can be returned by InterruptibleRecv */
enum class IntrRecvError {
OK,
Timeout,
Disconnected,
NetworkError,
Interrupted
};
/**
* Try to read a specified number of bytes from a socket. Please read the "see
* also" section for more detail.
*
* @param data The buffer where the read bytes should be stored.
* @param len The number of bytes to read into the specified buffer.
* @param timeout The total timeout in milliseconds for this read.
* @param sock The socket (has to be in non-blocking mode) from which to read bytes.
*
* @returns An IntrRecvError indicating the resulting status of this read.
* IntrRecvError::OK only if all of the specified number of bytes were
* read.
*
* @see This function can be interrupted by calling InterruptSocks5(bool).
* Sockets can be made non-blocking with SetSocketNonBlocking(const
* SOCKET&, bool).
*/
static IntrRecvError InterruptibleRecv(uint8_t* data, size_t len, int timeout, const Sock& sock)
{
int64_t curTime = GetTimeMillis();
int64_t endTime = curTime + timeout;
while (len > 0 && curTime < endTime) {
ssize_t ret = sock.Recv(data, len, 0); // Optimistically try the recv first
if (ret > 0) {
len -= ret;
data += ret;
} else if (ret == 0) { // Unexpected disconnection
return IntrRecvError::Disconnected;
} else { // Other error or blocking
int nErr = WSAGetLastError();
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) {
// Only wait at most MAX_WAIT_FOR_IO at a time, unless
// we're approaching the end of the specified total timeout
const auto remaining = std::chrono::milliseconds{endTime - curTime};
const auto timeout = std::min(remaining, std::chrono::milliseconds{MAX_WAIT_FOR_IO});
if (!sock.Wait(timeout, Sock::RECV)) {
return IntrRecvError::NetworkError;
}
} else {
return IntrRecvError::NetworkError;
}
}
if (interruptSocks5Recv)
return IntrRecvError::Interrupted;
curTime = GetTimeMillis();
}
return len == 0 ? IntrRecvError::OK : IntrRecvError::Timeout;
}
/** Convert SOCKS5 reply to an error message */
static std::string Socks5ErrorString(uint8_t err)
{
switch(err) {
case SOCKS5Reply::GENFAILURE:
return "general failure";
case SOCKS5Reply::NOTALLOWED:
return "connection not allowed";
case SOCKS5Reply::NETUNREACHABLE:
return "network unreachable";
case SOCKS5Reply::HOSTUNREACHABLE:
return "host unreachable";
case SOCKS5Reply::CONNREFUSED:
return "connection refused";
case SOCKS5Reply::TTLEXPIRED:
return "TTL expired";
case SOCKS5Reply::CMDUNSUPPORTED:
return "protocol error";
case SOCKS5Reply::ATYPEUNSUPPORTED:
return "address type not supported";
default:
return "unknown";
}
}
bool Socks5(const std::string& strDest, uint16_t port, const ProxyCredentials* auth, const Sock& sock)
{
IntrRecvError recvr;
LogPrint(BCLog::NET, "SOCKS5 connecting %s\n", strDest);
if (strDest.size() > 255) {
return error("Hostname too long");
}
// Construct the version identifier/method selection message
std::vector<uint8_t> vSocks5Init;
vSocks5Init.push_back(SOCKSVersion::SOCKS5); // We want the SOCK5 protocol
if (auth) {
vSocks5Init.push_back(0x02); // 2 method identifiers follow...
vSocks5Init.push_back(SOCKS5Method::NOAUTH);
vSocks5Init.push_back(SOCKS5Method::USER_PASS);
} else {
vSocks5Init.push_back(0x01); // 1 method identifier follows...
vSocks5Init.push_back(SOCKS5Method::NOAUTH);
}
ssize_t ret = sock.Send(vSocks5Init.data(), vSocks5Init.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5Init.size()) {
return error("Error sending to proxy");
}
uint8_t pchRet1[2];
if ((recvr = InterruptibleRecv(pchRet1, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() timeout or other failure\n", strDest, port);
return false;
}
if (pchRet1[0] != SOCKSVersion::SOCKS5) {
return error("Proxy failed to initialize");
}
if (pchRet1[1] == SOCKS5Method::USER_PASS && auth) {
// Perform username/password authentication (as described in RFC1929)
std::vector<uint8_t> vAuth;
vAuth.push_back(0x01); // Current (and only) version of user/pass subnegotiation
if (auth->username.size() > 255 || auth->password.size() > 255)
return error("Proxy username or password too long");
vAuth.push_back(auth->username.size());
vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end());
vAuth.push_back(auth->password.size());
vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end());
ret = sock.Send(vAuth.data(), vAuth.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vAuth.size()) {
return error("Error sending authentication to proxy");
}
LogPrint(BCLog::PROXY, "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password);
uint8_t pchRetA[2];
if ((recvr = InterruptibleRecv(pchRetA, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
return error("Error reading proxy authentication response");
}
if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) {
return error("Proxy authentication unsuccessful");
}
} else if (pchRet1[1] == SOCKS5Method::NOAUTH) {
// Perform no authentication
} else {
return error("Proxy requested wrong authentication method %02x", pchRet1[1]);
}
std::vector<uint8_t> vSocks5;
vSocks5.push_back(SOCKSVersion::SOCKS5); // VER protocol version
vSocks5.push_back(SOCKS5Command::CONNECT); // CMD CONNECT
vSocks5.push_back(0x00); // RSV Reserved must be 0
vSocks5.push_back(SOCKS5Atyp::DOMAINNAME); // ATYP DOMAINNAME
vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function
vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end());
vSocks5.push_back((port >> 8) & 0xFF);
vSocks5.push_back((port >> 0) & 0xFF);
ret = sock.Send(vSocks5.data(), vSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5.size()) {
return error("Error sending to proxy");
}
uint8_t pchRet2[4];
if ((recvr = InterruptibleRecv(pchRet2, 4, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
if (recvr == IntrRecvError::Timeout) {
/* If a timeout happens here, this effectively means we timed out while connecting
* to the remote node. This is very common for Tor, so do not print an
* error message. */
return false;
} else {
return error("Error while reading proxy response");
}
}
if (pchRet2[0] != SOCKSVersion::SOCKS5) {
return error("Proxy failed to accept request");
}
if (pchRet2[1] != SOCKS5Reply::SUCCEEDED) {
// Failures to connect to a peer that are not proxy errors
LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1]));
return false;
}
if (pchRet2[2] != 0x00) { // Reserved field must be 0
return error("Error: malformed proxy response");
}
uint8_t pchRet3[256];
switch (pchRet2[3])
{
case SOCKS5Atyp::IPV4: recvr = InterruptibleRecv(pchRet3, 4, g_socks5_recv_timeout, sock); break;
case SOCKS5Atyp::IPV6: recvr = InterruptibleRecv(pchRet3, 16, g_socks5_recv_timeout, sock); break;
case SOCKS5Atyp::DOMAINNAME:
{
recvr = InterruptibleRecv(pchRet3, 1, g_socks5_recv_timeout, sock);
if (recvr != IntrRecvError::OK) {
return error("Error reading from proxy");
}
int nRecv = pchRet3[0];
recvr = InterruptibleRecv(pchRet3, nRecv, g_socks5_recv_timeout, sock);
break;
}
default: return error("Error: malformed proxy response");
}
if (recvr != IntrRecvError::OK) {
return error("Error reading from proxy");
}
if ((recvr = InterruptibleRecv(pchRet3, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
return error("Error reading from proxy");
}
LogPrint(BCLog::NET, "SOCKS5 connected %s\n", strDest);
return true;
}
std::unique_ptr<Sock> CreateSockTCP(const CService& address_family)
{
// Create a sockaddr from the specified service.
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!address_family.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot create socket for %s: unsupported network\n", address_family.ToString());
return nullptr;
}
// Create a TCP socket in the address family of the specified service.
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
// Ensure that waiting for I/O on this socket won't result in undefined
// behavior.
if (!IsSelectableSocket(hSocket)) {
CloseSocket(hSocket);
LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
return nullptr;
}
#ifdef SO_NOSIGPIPE
int set = 1;
// Set the no-sigpipe option on the socket for BSD systems, other UNIXes
// should use the MSG_NOSIGNAL flag for every send.
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
// Set the no-delay option (disable Nagle's algorithm) on the TCP socket.
SetSocketNoDelay(hSocket);
// Set the non-blocking option on the socket.
if (!SetSocketNonBlocking(hSocket, true)) {
CloseSocket(hSocket);
LogPrintf("Error setting socket to non-blocking: %s\n", NetworkErrorString(WSAGetLastError()));
return nullptr;
}
return std::make_unique<Sock>(hSocket);
}
std::function<std::unique_ptr<Sock>(const CService&)> CreateSock = CreateSockTCP;
template<typename... Args>
static void LogConnectFailure(bool manual_connection, const char* fmt, const Args&... args) {
std::string error_message = tfm::format(fmt, args...);
if (manual_connection) {
LogPrintf("%s\n", error_message);
} else {
LogPrint(BCLog::NET, "%s\n", error_message);
}
}
bool ConnectSocketDirectly(const CService &addrConnect, const Sock& sock, int nTimeout, bool manual_connection)
{
// Create a sockaddr from the specified service.
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (sock.Get() == INVALID_SOCKET) {
LogPrintf("Cannot connect to %s: invalid socket\n", addrConnect.ToString());
return false;
}
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
return false;
}
// Connect to the addrConnect service on the hSocket socket.
if (sock.Connect(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
int nErr = WSAGetLastError();
// WSAEINVAL is here because some legacy version of winsock uses it
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
{
// Connection didn't actually fail, but is being established
// asynchronously. Thus, use async I/O api (select/poll)
// synchronously to check for successful connection with a timeout.
const Sock::Event requested = Sock::RECV | Sock::SEND;
Sock::Event occurred;
if (!sock.Wait(std::chrono::milliseconds{nTimeout}, requested, &occurred)) {
LogPrintf("wait for connect to %s failed: %s\n",
addrConnect.ToString(),
NetworkErrorString(WSAGetLastError()));
return false;
} else if (occurred == 0) {
LogPrint(BCLog::NET, "connection attempt to %s timed out\n", addrConnect.ToString());
return false;
}
// Even if the wait was successful, the connect might not
// have been successful. The reason for this failure is hidden away
// in the SO_ERROR for the socket in modern systems. We read it into
// sockerr here.
int sockerr;
socklen_t sockerr_len = sizeof(sockerr);
if (sock.GetSockOpt(SOL_SOCKET, SO_ERROR, (sockopt_arg_type)&sockerr, &sockerr_len) ==
SOCKET_ERROR) {
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
return false;
}
if (sockerr != 0) {
LogConnectFailure(manual_connection,
"connect() to %s failed after wait: %s",
addrConnect.ToString(),
NetworkErrorString(sockerr));
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
LogConnectFailure(manual_connection, "connect() to %s failed: %s", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
return false;
}
}
return true;
}
bool SetProxy(enum Network net, const proxyType &addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!addrProxy.IsValid())
return false;
LOCK(g_proxyinfo_mutex);
proxyInfo[net] = addrProxy;
return true;
}
bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
assert(net >= 0 && net < NET_MAX);
LOCK(g_proxyinfo_mutex);
if (!proxyInfo[net].IsValid())
return false;
proxyInfoOut = proxyInfo[net];
return true;
}
bool SetNameProxy(const proxyType &addrProxy) {
if (!addrProxy.IsValid())
return false;
LOCK(g_proxyinfo_mutex);
nameProxy = addrProxy;
return true;
}
bool GetNameProxy(proxyType &nameProxyOut) {
LOCK(g_proxyinfo_mutex);
if(!nameProxy.IsValid())
return false;
nameProxyOut = nameProxy;
return true;
}
bool HaveNameProxy() {
LOCK(g_proxyinfo_mutex);
return nameProxy.IsValid();
}
bool IsProxy(const CNetAddr &addr) {
LOCK(g_proxyinfo_mutex);
for (int i = 0; i < NET_MAX; i++) {
if (addr == static_cast<CNetAddr>(proxyInfo[i].proxy))
return true;
}
return false;
}
bool ConnectThroughProxy(const proxyType& proxy, const std::string& strDest, uint16_t port, const Sock& sock, int nTimeout, bool& outProxyConnectionFailed)
{
// first connect to proxy server
if (!ConnectSocketDirectly(proxy.proxy, sock, nTimeout, true)) {
outProxyConnectionFailed = true;
return false;
}
// do socks negotiation
if (proxy.randomize_credentials) {
ProxyCredentials random_auth;
static std::atomic_int counter(0);
random_auth.username = random_auth.password = strprintf("%i", counter++);
if (!Socks5(strDest, port, &random_auth, sock)) {
return false;
}
} else {
if (!Socks5(strDest, port, 0, sock)) {
return false;
}
}
return true;
}
bool LookupSubNet(const std::string& strSubnet, CSubNet& ret, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(strSubnet)) {
return false;
}
size_t slash = strSubnet.find_last_of('/');
std::vector<CNetAddr> vIP;
std::string strAddress = strSubnet.substr(0, slash);
// TODO: Use LookupHost(const std::string&, CNetAddr&, bool) instead to just get
// one CNetAddr.
if (LookupHost(strAddress, vIP, 1, false, dns_lookup_function))
{
CNetAddr network = vIP[0];
if (slash != strSubnet.npos)
{
std::string strNetmask = strSubnet.substr(slash + 1);
uint8_t n;
if (ParseUInt8(strNetmask, &n)) {
// If valid number, assume CIDR variable-length subnet masking
ret = CSubNet(network, n);
return ret.IsValid();
}
else // If not a valid number, try full netmask syntax
{
// Never allow lookup for netmask
if (LookupHost(strNetmask, vIP, 1, false, dns_lookup_function)) {
ret = CSubNet(network, vIP[0]);
return ret.IsValid();
}
}
}
else
{
ret = CSubNet(network);
return ret.IsValid();
}
}
return false;
}
bool SetSocketNonBlocking(const SOCKET& hSocket, bool fNonBlocking)
{
if (fNonBlocking) {
#ifdef WIN32
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
return false;
}
} else {
#ifdef WIN32
u_long nZero = 0;
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
return false;
}
}
return true;
}
bool SetSocketNoDelay(const SOCKET& hSocket)
{
int set = 1;
int rc = setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
return rc == 0;
}
void InterruptSocks5(bool interrupt)
{
interruptSocks5Recv = interrupt;
}