@ -203,8 +203,8 @@ Some improvements that are still TODO:
* <aname="myfootnote4">[4]</a> Bhaskar Biswas, Vincent Herbert. *Efficient Root Finding of Polynomials over Fields of Characteristic 2.* 2009. hal-00626997. [[URL]](https://hal.archives-ouvertes.fr/hal-00626997) [[PDF]](https://hal.archives-ouvertes.fr/hal-00626997/document)
* <aname="myfootnote6">[6]</a> Eppstein, David, Michael T. Goodrich, Frank Uyeda, and George Varghese. *What's the difference?: efficient set reconciliation without prior context.* ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 218-229. ACM, 2011. [[PDF]](https://www.ics.uci.edu/~eppstein/pubs/EppGooUye-SIGCOMM-11.pdf)
* <aname="myfootnote7">[7]</a> Goodrich, Michael T. and Michael Mitzenmacher. *Invertible bloom lookup tables.* 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2011): 792-799. [[PDF]](https://arxiv.org/pdf/1101.2245.pdf)
* <aname="myfootnote8">[8]</a> Maxwell, Gregory F. *[Blocksonly mode BW savings, the limits of efficient block xfer, and better relay](https://bitcointalk.org/index.php?topic=1377345.0)* Bitcointalk 2016, *[Technical notes on mempool synchronizing relay](https://people.xiph.org/~greg/mempool_sync_relay.txt)* #bitcoin-wizards 2016.
* <aname="myfootnote9">[9]</a> Maxwell, Gregory F. *[Block network coding](https://en.bitcoin.it/wiki/User:Gmaxwell/block_network_coding)* Bitcoin Wiki 2014, *[Technical notes on efficient block xfer](https://people.xiph.org/~greg/efficient.block.xfer.txt)* #bitcoin-wizards 2015.
* <aname="myfootnote8">[8]</a> Maxwell, Gregory F. *[Blocksonly mode BW savings, the limits of efficient block xfer, and better relay](https://bitcointalk.org/index.php?topic=1377345.0)* Bitcointalk 2016, *[Technical notes on mempool synchronizing relay](https://nt4tn.net/tech-notes/2016.mempool_sync_relay.txt)* #bitcoin-wizards 2016.
* <aname="myfootnote9">[9]</a> Maxwell, Gregory F. *[Block network coding](https://en.bitcoin.it/wiki/User:Gmaxwell/block_network_coding)* Bitcoin Wiki 2014, *[Technical notes on efficient block xfer](https://nt4tn.net/tech-notes/201512.efficient.block.xfer.txt)* #bitcoin-wizards 2015.
* <aname="myfootnote11">[11]</a> Y. Misky, A. Trachtenberg, R. Zippel. *Set Reconciliation with Nearly Optimal Communication Complexity.* Cornell University, 2000. [[URL]](https://ecommons.cornell.edu/handle/1813/5803) [[PDF]](https://ecommons.cornell.edu/bitstream/handle/1813/5803/2000-1813.pdf)
* <aname="myfootnote12">[12]</a> Itoh, Toshiya, and Shigeo Tsujii. "A fast algorithm for computing multiplicative inverses in GF (2m) using normal bases." Information and computation 78, no. 3 (1988): 171-177. [[URL]](https://www.sciencedirect.com/science/article/pii/0890540188900247)