|
|
|
@ -1,5 +1,5 @@
|
|
|
|
|
// Copyright (c) 2012 Pieter Wuille
|
|
|
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
|
|
#ifndef _BITCOIN_ADDRMAN
|
|
|
|
@ -17,29 +17,31 @@
|
|
|
|
|
#include <stdint.h>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
/** Extended statistics about a CAddress */
|
|
|
|
|
/**
|
|
|
|
|
* Extended statistics about a CAddress
|
|
|
|
|
*/
|
|
|
|
|
class CAddrInfo : public CAddress
|
|
|
|
|
{
|
|
|
|
|
private:
|
|
|
|
|
// where knowledge about this address first came from
|
|
|
|
|
//! where knowledge about this address first came from
|
|
|
|
|
CNetAddr source;
|
|
|
|
|
|
|
|
|
|
// last successful connection by us
|
|
|
|
|
//! last successful connection by us
|
|
|
|
|
int64_t nLastSuccess;
|
|
|
|
|
|
|
|
|
|
// last try whatsoever by us:
|
|
|
|
|
//! last try whatsoever by us:
|
|
|
|
|
// int64_t CAddress::nLastTry
|
|
|
|
|
|
|
|
|
|
// connection attempts since last successful attempt
|
|
|
|
|
//! connection attempts since last successful attempt
|
|
|
|
|
int nAttempts;
|
|
|
|
|
|
|
|
|
|
// reference count in new sets (memory only)
|
|
|
|
|
//! reference count in new sets (memory only)
|
|
|
|
|
int nRefCount;
|
|
|
|
|
|
|
|
|
|
// in tried set? (memory only)
|
|
|
|
|
//! in tried set? (memory only)
|
|
|
|
|
bool fInTried;
|
|
|
|
|
|
|
|
|
|
// position in vRandom
|
|
|
|
|
//! position in vRandom
|
|
|
|
|
int nRandomPos;
|
|
|
|
|
|
|
|
|
|
friend class CAddrMan;
|
|
|
|
@ -76,200 +78,205 @@ public:
|
|
|
|
|
Init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate in which "tried" bucket this entry belongs
|
|
|
|
|
//! Calculate in which "tried" bucket this entry belongs
|
|
|
|
|
int GetTriedBucket(const std::vector<unsigned char> &nKey) const;
|
|
|
|
|
|
|
|
|
|
// Calculate in which "new" bucket this entry belongs, given a certain source
|
|
|
|
|
//! Calculate in which "new" bucket this entry belongs, given a certain source
|
|
|
|
|
int GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const;
|
|
|
|
|
|
|
|
|
|
// Calculate in which "new" bucket this entry belongs, using its default source
|
|
|
|
|
//! Calculate in which "new" bucket this entry belongs, using its default source
|
|
|
|
|
int GetNewBucket(const std::vector<unsigned char> &nKey) const
|
|
|
|
|
{
|
|
|
|
|
return GetNewBucket(nKey, source);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Determine whether the statistics about this entry are bad enough so that it can just be deleted
|
|
|
|
|
//! Determine whether the statistics about this entry are bad enough so that it can just be deleted
|
|
|
|
|
bool IsTerrible(int64_t nNow = GetAdjustedTime()) const;
|
|
|
|
|
|
|
|
|
|
// Calculate the relative chance this entry should be given when selecting nodes to connect to
|
|
|
|
|
//! Calculate the relative chance this entry should be given when selecting nodes to connect to
|
|
|
|
|
double GetChance(int64_t nNow = GetAdjustedTime()) const;
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Stochastic address manager
|
|
|
|
|
//
|
|
|
|
|
// Design goals:
|
|
|
|
|
// * Only keep a limited number of addresses around, so that addr.dat and memory requirements do not grow without bound.
|
|
|
|
|
// * Keep the address tables in-memory, and asynchronously dump the entire to able in addr.dat.
|
|
|
|
|
// * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
|
|
|
|
|
//
|
|
|
|
|
// To that end:
|
|
|
|
|
// * Addresses are organized into buckets.
|
|
|
|
|
// * Address that have not yet been tried go into 256 "new" buckets.
|
|
|
|
|
// * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random
|
|
|
|
|
// * The actual bucket is chosen from one of these, based on the range the address itself is located.
|
|
|
|
|
// * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that
|
|
|
|
|
// are seen frequently. The chance for increasing this multiplicity decreases exponentially.
|
|
|
|
|
// * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen
|
|
|
|
|
// ones) is removed from it first.
|
|
|
|
|
// * Addresses of nodes that are known to be accessible go into 64 "tried" buckets.
|
|
|
|
|
// * Each address range selects at random 4 of these buckets.
|
|
|
|
|
// * The actual bucket is chosen from one of these, based on the full address.
|
|
|
|
|
// * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently
|
|
|
|
|
// tried ones) is evicted from it, back to the "new" buckets.
|
|
|
|
|
// * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not
|
|
|
|
|
// be observable by adversaries.
|
|
|
|
|
// * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive)
|
|
|
|
|
// consistency checks for the entire data structure.
|
|
|
|
|
|
|
|
|
|
// total number of buckets for tried addresses
|
|
|
|
|
/** Stochastic address manager
|
|
|
|
|
*
|
|
|
|
|
* Design goals:
|
|
|
|
|
* * Keep the address tables in-memory, and asynchronously dump the entire to able in peers.dat.
|
|
|
|
|
* * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
|
|
|
|
|
*
|
|
|
|
|
* To that end:
|
|
|
|
|
* * Addresses are organized into buckets.
|
|
|
|
|
* * Address that have not yet been tried go into 256 "new" buckets.
|
|
|
|
|
* * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random
|
|
|
|
|
* * The actual bucket is chosen from one of these, based on the range the address itself is located.
|
|
|
|
|
* * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that
|
|
|
|
|
* are seen frequently. The chance for increasing this multiplicity decreases exponentially.
|
|
|
|
|
* * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen
|
|
|
|
|
* ones) is removed from it first.
|
|
|
|
|
* * Addresses of nodes that are known to be accessible go into 64 "tried" buckets.
|
|
|
|
|
* * Each address range selects at random 4 of these buckets.
|
|
|
|
|
* * The actual bucket is chosen from one of these, based on the full address.
|
|
|
|
|
* * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently
|
|
|
|
|
* tried ones) is evicted from it, back to the "new" buckets.
|
|
|
|
|
* * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not
|
|
|
|
|
* be observable by adversaries.
|
|
|
|
|
* * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive)
|
|
|
|
|
* consistency checks for the entire data structure.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
//! total number of buckets for tried addresses
|
|
|
|
|
#define ADDRMAN_TRIED_BUCKET_COUNT 64
|
|
|
|
|
|
|
|
|
|
// maximum allowed number of entries in buckets for tried addresses
|
|
|
|
|
//! maximum allowed number of entries in buckets for tried addresses
|
|
|
|
|
#define ADDRMAN_TRIED_BUCKET_SIZE 64
|
|
|
|
|
|
|
|
|
|
// total number of buckets for new addresses
|
|
|
|
|
//! total number of buckets for new addresses
|
|
|
|
|
#define ADDRMAN_NEW_BUCKET_COUNT 256
|
|
|
|
|
|
|
|
|
|
// maximum allowed number of entries in buckets for new addresses
|
|
|
|
|
//! maximum allowed number of entries in buckets for new addresses
|
|
|
|
|
#define ADDRMAN_NEW_BUCKET_SIZE 64
|
|
|
|
|
|
|
|
|
|
// over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread
|
|
|
|
|
//! over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread
|
|
|
|
|
#define ADDRMAN_TRIED_BUCKETS_PER_GROUP 4
|
|
|
|
|
|
|
|
|
|
// over how many buckets entries with new addresses originating from a single group are spread
|
|
|
|
|
//! over how many buckets entries with new addresses originating from a single group are spread
|
|
|
|
|
#define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 32
|
|
|
|
|
|
|
|
|
|
// in how many buckets for entries with new addresses a single address may occur
|
|
|
|
|
//! in how many buckets for entries with new addresses a single address may occur
|
|
|
|
|
#define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 4
|
|
|
|
|
|
|
|
|
|
// how many entries in a bucket with tried addresses are inspected, when selecting one to replace
|
|
|
|
|
//! how many entries in a bucket with tried addresses are inspected, when selecting one to replace
|
|
|
|
|
#define ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT 4
|
|
|
|
|
|
|
|
|
|
// how old addresses can maximally be
|
|
|
|
|
//! how old addresses can maximally be
|
|
|
|
|
#define ADDRMAN_HORIZON_DAYS 30
|
|
|
|
|
|
|
|
|
|
// after how many failed attempts we give up on a new node
|
|
|
|
|
//! after how many failed attempts we give up on a new node
|
|
|
|
|
#define ADDRMAN_RETRIES 3
|
|
|
|
|
|
|
|
|
|
// how many successive failures are allowed ...
|
|
|
|
|
//! how many successive failures are allowed ...
|
|
|
|
|
#define ADDRMAN_MAX_FAILURES 10
|
|
|
|
|
|
|
|
|
|
// ... in at least this many days
|
|
|
|
|
//! ... in at least this many days
|
|
|
|
|
#define ADDRMAN_MIN_FAIL_DAYS 7
|
|
|
|
|
|
|
|
|
|
// the maximum percentage of nodes to return in a getaddr call
|
|
|
|
|
//! the maximum percentage of nodes to return in a getaddr call
|
|
|
|
|
#define ADDRMAN_GETADDR_MAX_PCT 23
|
|
|
|
|
|
|
|
|
|
// the maximum number of nodes to return in a getaddr call
|
|
|
|
|
//! the maximum number of nodes to return in a getaddr call
|
|
|
|
|
#define ADDRMAN_GETADDR_MAX 2500
|
|
|
|
|
|
|
|
|
|
/** Stochastical (IP) address manager */
|
|
|
|
|
/**
|
|
|
|
|
* Stochastical (IP) address manager
|
|
|
|
|
*/
|
|
|
|
|
class CAddrMan
|
|
|
|
|
{
|
|
|
|
|
private:
|
|
|
|
|
// critical section to protect the inner data structures
|
|
|
|
|
//! critical section to protect the inner data structures
|
|
|
|
|
mutable CCriticalSection cs;
|
|
|
|
|
|
|
|
|
|
// secret key to randomize bucket select with
|
|
|
|
|
//! secret key to randomize bucket select with
|
|
|
|
|
std::vector<unsigned char> nKey;
|
|
|
|
|
|
|
|
|
|
// last used nId
|
|
|
|
|
//! last used nId
|
|
|
|
|
int nIdCount;
|
|
|
|
|
|
|
|
|
|
// table with information about all nIds
|
|
|
|
|
//! table with information about all nIds
|
|
|
|
|
std::map<int, CAddrInfo> mapInfo;
|
|
|
|
|
|
|
|
|
|
// find an nId based on its network address
|
|
|
|
|
//! find an nId based on its network address
|
|
|
|
|
std::map<CNetAddr, int> mapAddr;
|
|
|
|
|
|
|
|
|
|
// randomly-ordered vector of all nIds
|
|
|
|
|
//! randomly-ordered vector of all nIds
|
|
|
|
|
std::vector<int> vRandom;
|
|
|
|
|
|
|
|
|
|
// number of "tried" entries
|
|
|
|
|
int nTried;
|
|
|
|
|
|
|
|
|
|
// list of "tried" buckets
|
|
|
|
|
//! list of "tried" buckets
|
|
|
|
|
std::vector<std::vector<int> > vvTried;
|
|
|
|
|
|
|
|
|
|
// number of (unique) "new" entries
|
|
|
|
|
//! number of (unique) "new" entries
|
|
|
|
|
int nNew;
|
|
|
|
|
|
|
|
|
|
// list of "new" buckets
|
|
|
|
|
//! list of "new" buckets
|
|
|
|
|
std::vector<std::set<int> > vvNew;
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
// Find an entry.
|
|
|
|
|
//! Find an entry.
|
|
|
|
|
CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL);
|
|
|
|
|
|
|
|
|
|
// find an entry, creating it if necessary.
|
|
|
|
|
// nTime and nServices of found node is updated, if necessary.
|
|
|
|
|
//! find an entry, creating it if necessary.
|
|
|
|
|
//! nTime and nServices of the found node are updated, if necessary.
|
|
|
|
|
CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL);
|
|
|
|
|
|
|
|
|
|
// Swap two elements in vRandom.
|
|
|
|
|
//! Swap two elements in vRandom.
|
|
|
|
|
void SwapRandom(unsigned int nRandomPos1, unsigned int nRandomPos2);
|
|
|
|
|
|
|
|
|
|
// Return position in given bucket to replace.
|
|
|
|
|
//! Return position in given bucket to replace.
|
|
|
|
|
int SelectTried(int nKBucket);
|
|
|
|
|
|
|
|
|
|
// Remove an element from a "new" bucket.
|
|
|
|
|
// This is the only place where actual deletes occur.
|
|
|
|
|
// They are never deleted while in the "tried" table, only possibly evicted back to the "new" table.
|
|
|
|
|
//! Remove an element from a "new" bucket.
|
|
|
|
|
//! This is the only place where actual deletions occur.
|
|
|
|
|
//! Elements are never deleted while in the "tried" table, only possibly evicted back to the "new" table.
|
|
|
|
|
int ShrinkNew(int nUBucket);
|
|
|
|
|
|
|
|
|
|
// Move an entry from the "new" table(s) to the "tried" table
|
|
|
|
|
// @pre vvUnkown[nOrigin].count(nId) != 0
|
|
|
|
|
//! Move an entry from the "new" table(s) to the "tried" table
|
|
|
|
|
//! @pre vvUnkown[nOrigin].count(nId) != 0
|
|
|
|
|
void MakeTried(CAddrInfo& info, int nId, int nOrigin);
|
|
|
|
|
|
|
|
|
|
// Mark an entry "good", possibly moving it from "new" to "tried".
|
|
|
|
|
//! Mark an entry "good", possibly moving it from "new" to "tried".
|
|
|
|
|
void Good_(const CService &addr, int64_t nTime);
|
|
|
|
|
|
|
|
|
|
// Add an entry to the "new" table.
|
|
|
|
|
//! Add an entry to the "new" table.
|
|
|
|
|
bool Add_(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty);
|
|
|
|
|
|
|
|
|
|
// Mark an entry as attempted to connect.
|
|
|
|
|
//! Mark an entry as attempted to connect.
|
|
|
|
|
void Attempt_(const CService &addr, int64_t nTime);
|
|
|
|
|
|
|
|
|
|
// Select an address to connect to.
|
|
|
|
|
// nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100)
|
|
|
|
|
//! Select an address to connect to.
|
|
|
|
|
//! nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100)
|
|
|
|
|
CAddress Select_(int nUnkBias);
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_ADDRMAN
|
|
|
|
|
// Perform consistency check. Returns an error code or zero.
|
|
|
|
|
//! Perform consistency check. Returns an error code or zero.
|
|
|
|
|
int Check_();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Select several addresses at once.
|
|
|
|
|
//! Select several addresses at once.
|
|
|
|
|
void GetAddr_(std::vector<CAddress> &vAddr);
|
|
|
|
|
|
|
|
|
|
// Mark an entry as currently-connected-to.
|
|
|
|
|
//! Mark an entry as currently-connected-to.
|
|
|
|
|
void Connected_(const CService &addr, int64_t nTime);
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
// serialized format:
|
|
|
|
|
// * version byte (currently 0)
|
|
|
|
|
// * nKey
|
|
|
|
|
// * nNew
|
|
|
|
|
// * nTried
|
|
|
|
|
// * number of "new" buckets
|
|
|
|
|
// * all nNew addrinfos in vvNew
|
|
|
|
|
// * all nTried addrinfos in vvTried
|
|
|
|
|
// * for each bucket:
|
|
|
|
|
// * number of elements
|
|
|
|
|
// * for each element: index
|
|
|
|
|
//
|
|
|
|
|
// Notice that vvTried, mapAddr and vVector are never encoded explicitly;
|
|
|
|
|
// they are instead reconstructed from the other information.
|
|
|
|
|
//
|
|
|
|
|
// vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change,
|
|
|
|
|
// otherwise it is reconstructed as well.
|
|
|
|
|
//
|
|
|
|
|
// This format is more complex, but significantly smaller (at most 1.5 MiB), and supports
|
|
|
|
|
// changes to the ADDRMAN_ parameters without breaking the on-disk structure.
|
|
|
|
|
//
|
|
|
|
|
// We don't use ADD_SERIALIZE_METHODS since the serialization and deserialization code has
|
|
|
|
|
// very little in common.
|
|
|
|
|
/**
|
|
|
|
|
* serialized format:
|
|
|
|
|
* * version byte (currently 0)
|
|
|
|
|
* * nKey
|
|
|
|
|
* * nNew
|
|
|
|
|
* * nTried
|
|
|
|
|
* * number of "new" buckets
|
|
|
|
|
* * all nNew addrinfos in vvNew
|
|
|
|
|
* * all nTried addrinfos in vvTried
|
|
|
|
|
* * for each bucket:
|
|
|
|
|
* * number of elements
|
|
|
|
|
* * for each element: index
|
|
|
|
|
*
|
|
|
|
|
* Notice that vvTried, mapAddr and vVector are never encoded explicitly;
|
|
|
|
|
* they are instead reconstructed from the other information.
|
|
|
|
|
*
|
|
|
|
|
* vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change,
|
|
|
|
|
* otherwise it is reconstructed as well.
|
|
|
|
|
*
|
|
|
|
|
* This format is more complex, but significantly smaller (at most 1.5 MiB), and supports
|
|
|
|
|
* changes to the ADDRMAN_ parameters without breaking the on-disk structure.
|
|
|
|
|
*
|
|
|
|
|
* We don't use ADD_SERIALIZE_METHODS since the serialization and deserialization code has
|
|
|
|
|
* very little in common.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
template<typename Stream>
|
|
|
|
|
void Serialize(Stream &s, int nType, int nVersionDummy) const
|
|
|
|
|
{
|
|
|
|
@ -394,13 +401,13 @@ public:
|
|
|
|
|
nNew = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Return the number of (unique) addresses in all tables.
|
|
|
|
|
//! Return the number of (unique) addresses in all tables.
|
|
|
|
|
int size()
|
|
|
|
|
{
|
|
|
|
|
return vRandom.size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Consistency check
|
|
|
|
|
//! Consistency check
|
|
|
|
|
void Check()
|
|
|
|
|
{
|
|
|
|
|
#ifdef DEBUG_ADDRMAN
|
|
|
|
@ -413,7 +420,7 @@ public:
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add a single address.
|
|
|
|
|
//! Add a single address.
|
|
|
|
|
bool Add(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty = 0)
|
|
|
|
|
{
|
|
|
|
|
bool fRet = false;
|
|
|
|
@ -428,7 +435,7 @@ public:
|
|
|
|
|
return fRet;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add multiple addresses.
|
|
|
|
|
//! Add multiple addresses.
|
|
|
|
|
bool Add(const std::vector<CAddress> &vAddr, const CNetAddr& source, int64_t nTimePenalty = 0)
|
|
|
|
|
{
|
|
|
|
|
int nAdd = 0;
|
|
|
|
@ -444,7 +451,7 @@ public:
|
|
|
|
|
return nAdd > 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Mark an entry as accessible.
|
|
|
|
|
//! Mark an entry as accessible.
|
|
|
|
|
void Good(const CService &addr, int64_t nTime = GetAdjustedTime())
|
|
|
|
|
{
|
|
|
|
|
{
|
|
|
|
@ -455,7 +462,7 @@ public:
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Mark an entry as connection attempted to.
|
|
|
|
|
//! Mark an entry as connection attempted to.
|
|
|
|
|
void Attempt(const CService &addr, int64_t nTime = GetAdjustedTime())
|
|
|
|
|
{
|
|
|
|
|
{
|
|
|
|
@ -466,8 +473,10 @@ public:
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Choose an address to connect to.
|
|
|
|
|
// nUnkBias determines how much "new" entries are favored over "tried" ones (0-100).
|
|
|
|
|
/**
|
|
|
|
|
* Choose an address to connect to.
|
|
|
|
|
* nUnkBias determines how much "new" entries are favored over "tried" ones (0-100).
|
|
|
|
|
*/
|
|
|
|
|
CAddress Select(int nUnkBias = 50)
|
|
|
|
|
{
|
|
|
|
|
CAddress addrRet;
|
|
|
|
@ -480,7 +489,7 @@ public:
|
|
|
|
|
return addrRet;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Return a bunch of addresses, selected at random.
|
|
|
|
|
//! Return a bunch of addresses, selected at random.
|
|
|
|
|
std::vector<CAddress> GetAddr()
|
|
|
|
|
{
|
|
|
|
|
Check();
|
|
|
|
@ -493,7 +502,7 @@ public:
|
|
|
|
|
return vAddr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Mark an entry as currently-connected-to.
|
|
|
|
|
//! Mark an entry as currently-connected-to.
|
|
|
|
|
void Connected(const CService &addr, int64_t nTime = GetAdjustedTime())
|
|
|
|
|
{
|
|
|
|
|
{
|
|
|
|
|