You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
yacy_search_server/source/org/openzim/ZIMReader.java

563 lines
24 KiB

/*
* Copyright (C) 2011 Arunesh Mathur
*
* This file is a part of zimreader-java.
*
* zimreader-java is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3.0 as
* published by the Free Software Foundation.
*
* zimreader-java is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with zimreader-java. If not, see <http://www.gnu.org/licenses/>.
*/
package org.openzim;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.nio.charset.StandardCharsets;
import org.tukaani.xz.SingleXZInputStream;
import com.github.luben.zstd.ZstdInputStream;
/**
* @author Arunesh Mathur
* A ZIMReader that reads data from the ZIMFile
*
* @author Michael Christen
* Proof-Reading, unclustering, refactoring,
* naming adoption to https://wiki.openzim.org/wiki/ZIM_file_format,
* change of Exception handling,
* extension to more attributes as defined in spec (bugfix for mime type loading),
* bugfix to long parsing (prevented reading of large files),
* added extended cluster size parsing,
* added ZStandard compression parsing (cluster type 5),
* added cluster index and cluster iteration for efficient blob extraction
*/
public class ZIMReader {
private final static int MAX_CLUSTER_CACHE_SIZE = 100;
public final static String[] METADATA_KEYS = new String[] {
"Name", "Title", "Creator", "Publisher", "Date", "Description", "LongDescription",
"Language", "License", "Tags", "Relation", "Flavour", "Source", "Counter", "Scraper"
};
private final ZIMFile mFile;
private List<ArticleEntry> allArticlesCache = null;
private Map<Integer, Map<Integer, ArticleEntry>> indexedArticlesCache = null;
private final ArrayList<Cluster> clusterCache = new ArrayList<>();
public class DirectoryEntry {
private final int mimetype;
public final char namespace;
public final String url;
public final String title;
public final int urlListindex;
public DirectoryEntry(
final int urlListindex,
final char namespace, final String url, final String title, final int mimeType) {
assert url != null;
assert title != null;
this.mimetype = mimeType;
this.namespace = namespace;
this.url = url;
this.title = title;
this.urlListindex = urlListindex;
}
public String getMimeType() {
return mFile.getMimeType(this.mimetype);
}
}
public class ArticleEntry extends DirectoryEntry {
public final int cluster_number;
public final int blob_number;
public ArticleEntry(
final int urlListindex,
final char namespace, final String url, final String title, final int mimeType,
final int cluster_number, final int blob_number) {
super(urlListindex, namespace, url, title, mimeType);
this.cluster_number = cluster_number;
this.blob_number = blob_number;
}
}
public class RedirectEntry extends DirectoryEntry {
public final int redirect_index;
public RedirectEntry(
final int urlListindex,
final char namespace, final String url, final String title, final int mimeType,
final int redirect_index) {
super(urlListindex, namespace, url, title, mimeType);
this.redirect_index = redirect_index;
}
}
public class ArticleBlobEntry {
public final ArticleEntry article;
public final byte[] blob;
public ArticleBlobEntry(final ArticleEntry article, final byte[] blob) {
assert article != null;
assert blob != null;
this.article = article;
this.blob = blob;
}
}
public ZIMReader(final ZIMFile file) {
this.mFile = file;
}
public ZIMFile getZIMFile() {
return this.mFile;
}
public List<ArticleEntry> getAllArticles() throws IOException {
if (this.allArticlesCache != null) return allArticlesCache;
List<ArticleEntry> list = new ArrayList<>();
for (int i = 0; i < this.mFile.header_entryCount; i++) {
DirectoryEntry de = getDirectoryInfo(i);
if (de instanceof ArticleEntry) list.add((ArticleEntry) de);
}
this.allArticlesCache = list;
return list;
}
public Map<Integer, Map<Integer, ArticleEntry>> getIndexedArticles(List<ArticleEntry> list) {
if (this.indexedArticlesCache != null) return indexedArticlesCache;
Map<Integer, Map<Integer, ArticleEntry>> index = new HashMap<>();
for (ArticleEntry entry: list) {
Map<Integer, ArticleEntry> cluster = index.get(entry.cluster_number);
if (cluster == null) {
cluster = new HashMap<Integer, ArticleEntry>();
index.put(entry.cluster_number, cluster);
}
cluster.put(entry.blob_number, entry);
}
this.indexedArticlesCache = index;
return index;
}
/**
* A cluster iterator is the most efficient way to read all documents.
* Because iteration over the documents will cause that clusters are
* decompressed many times (as much as documents are in the cluster)
* it makes more sense to iterate over the clusters and not over the
* documents. That requires that we maintain an index of document entries
* which can be used to find out which documents are actually contained
* in a cluster. Reading of all document entries at first will create some
* waiting time at the beginning of the iteration, but this is not a on-top
* computing time, just concentrated for once at the beginning of all
* document fetch times. If the zim file is very large, this requires
* some extra RAM to cache the indexed document entries.
*/
public class ClusterIterator implements Iterator<ArticleBlobEntry> {
private Map<Integer, Map<Integer, ArticleEntry>> index;
private Cluster cluster;
private int clusterCounter;
private int blobCounter;
public ClusterIterator() throws IOException {
List<ArticleEntry> list = getAllArticles();
this.index = getIndexedArticles(list);
this.clusterCounter = 0;
this.blobCounter = 0;
this.cluster = null; // not loaded
}
private final void loadCluster() {
if (this.cluster == null) {
// load cluster
try {
this.cluster = new Cluster(this.clusterCounter);
} catch (IOException e) {
e.printStackTrace();
}
}
}
@Override
public boolean hasNext() {
if (this.clusterCounter >= mFile.header_clusterCount) return false;
loadCluster(); // ensure cluster is loaded
return this.blobCounter < this.cluster.blobs.size();
}
@Override
public ArticleBlobEntry next() {
Map<Integer, ArticleEntry> clusterMap = this.index.get(this.clusterCounter);
ArticleEntry ae = clusterMap.get(this.blobCounter);
loadCluster(); // ensure cluster is loaded
ArticleBlobEntry abe = new ArticleBlobEntry(ae, this.cluster.getBlob(this.blobCounter));
// increase the counter(s)
this.blobCounter++;
if (this.blobCounter >= this.cluster.blobs.size()) {
this.clusterCounter++;
this.cluster = null; // unload cluster
this.blobCounter = 0;
}
return abe;
}
}
public final String getMetadata(String key) throws IOException {
DirectoryEntry de = getDirectoryInfo('M', key);
if (de == null) return null; // metadata not found; that would be normal
byte[] val = getArticleData(de);
if (val == null) return null; // article data not found: that is not normal
if (val.length == 0) return null; // that empty string is a proper value, however, not usable for a client
return new String(val, StandardCharsets.UTF_8);
}
public DirectoryEntry getMainDirectoryEntry() throws IOException {
DirectoryEntry de = getDirectoryInfo(this.mFile.header_mainPage);
if (de instanceof RedirectEntry) {
// resolve redirect to get the actual main page
int redirect = ((RedirectEntry) de).redirect_index;
de = getDirectoryInfo(redirect);
}
// For the main entry we demand a "text/html" mime type.
// Many zim files do not provide this as the main file, which is strange (maybe lazy/irresponsibe)
// Because the main entry is important for a validation, we seek for one entry which may
// be proper for indexing.
int entryNumner = 0;
while (!de.getMimeType().equals("text/html") && entryNumner < this.mFile.header_entryCount) {
de = getDirectoryInfo(entryNumner);
entryNumner++;
if (de.namespace != 'C' && de.namespace != 'A') continue;
if (!(de instanceof ArticleEntry)) continue;
if (!de.getMimeType().equals("text/html")) continue;
if (de.url.contains("404") || de.title.contains("404") || de.title.contains("301")) continue; // is a pain
return de;
}
return de;
}
public String getURLByURLOrder(final int entryNumber) throws IOException {
// The position of URL i
long pos = this.mFile.getURLPtr(entryNumber);
this.mFile.mReader.seek(pos);
// Article or Redirect entry?
int mimeType = this.mFile.mReader.readTwoLittleEndianBytesInt();
if (mimeType == 65535) {
this.mFile.mReader.seek(pos + 12);
return this.mFile.mReader.readZeroTerminatedString();
} else {
this.mFile.mReader.seek(pos + 16);
return this.mFile.mReader.readZeroTerminatedString();
}
}
public String getURLByTitleOrder(final int entryNumber) throws IOException {
// The articleNumber of the position of URL i
int articleNumber = this.mFile.getTitlePtr(entryNumber);
return getURLByURLOrder(articleNumber);
}
public DirectoryEntry getDirectoryInfo(final int entryNumber) throws IOException {
// Get value of article at index
int pointer_to_the_URL_pointer = this.mFile.getTitlePtr(entryNumber);
// Get value of article in urlPtrPos
long pointer_to_the_directory_entry = this.mFile.getURLPtr(pointer_to_the_URL_pointer);
// Go to the location of the directory entry
this.mFile.mReader.seek(pointer_to_the_directory_entry);
// read the Content Entry
final int type = this.mFile.mReader.readTwoLittleEndianBytesInt(); // 2, 0xffff for redirect
this.mFile.mReader.read(); // 1, ignore, parameter length not used
final char namespace = (char) this.mFile.mReader.read(); // 1
this.mFile.mReader.readFourLittleEndianBytesInt(); // 4, ignore, revision not used
// Article or Redirect entry
if (type == 65535) {
final int redirectIndex = this.mFile.mReader.readFourLittleEndianBytesInt();
final String url = this.mFile.mReader.readZeroTerminatedString();
String title = this.mFile.mReader.readZeroTerminatedString();
title = title.equals("") ? url : title;
return new RedirectEntry(entryNumber, namespace, url, title, type, redirectIndex);
} else {
final int cluster_number = this.mFile.mReader.readFourLittleEndianBytesInt(); // 4
final int blob_number = this.mFile.mReader.readFourLittleEndianBytesInt(); // 4
final String url = this.mFile.mReader.readZeroTerminatedString(); // zero terminated
String title = this.mFile.mReader.readZeroTerminatedString(); // zero terminated
title = title.equals("") ? url : title;
return new ArticleEntry(entryNumber, namespace, url, title, type, cluster_number, blob_number);
}
}
// Gives the minimum required information needed for the given articleName
// This makes a binary search on the article name entry list.
public DirectoryEntry getDirectoryInfo(final char namespace, String articleName) throws IOException {
DirectoryEntry entry;
String cmpStr;
final int numberOfArticles = this.mFile.header_entryCount;
int beg = 0, end = numberOfArticles, mid;
articleName = namespace + "/" + articleName;
while (beg <= end) {
mid = beg + ((end - beg) / 2);
entry = getDirectoryInfo(mid);
if (entry == null) {
return null;
}
cmpStr = entry.namespace + "/" + entry.title;
if (articleName.compareTo(cmpStr) < 0) {
end = mid - 1;
} else if (articleName.compareTo(cmpStr) > 0) {
beg = mid + 1;
} else {
return entry;
}
}
return null;
}
public Cluster getCluster(int clusterNumber) throws IOException {
for (int i = 0; i < this.clusterCache.size(); i++) {
Cluster c = clusterCache.get(i);
if (c.cluster_number == clusterNumber) return c;
}
// cache miss
Cluster c = new Cluster(clusterNumber);
// check cache size
if (clusterCache.size() >= MAX_CLUSTER_CACHE_SIZE) {
// remove one entry: the first entry is the oldest entry
this.clusterCache.remove(0);
}
this.clusterCache.add(c);
return c;
}
/**
* Cluster class is required to read a whole cluster with all documents inside at once.
* This is a good thing because reading single documents from a cluster requires that the
* cluster is decompressed every time again and again. Doing whole clusters with all documents
* at once means that the decompression is much more efficient because it is done only once.
* This can of course only be done, if:
* - we want to iterate through all documents of a ZIM file
* - we have reverse indexed all directory entries to be able to assign metadata to cluster documents
*
* Reference implementation: https://github.com/openzim/libzim/blob/main/src/cluster.cpp
*/
private class Cluster {
private int cluster_number; // used to identify the correct cache entry
private List<byte[]> blobs;
private boolean extended;
public Cluster(int cluster_number) throws IOException {
this.cluster_number = cluster_number;
// open the cluster and make a Input Stream with the proper decompression type
final long clusterPos = mFile.geClusterPtr(cluster_number);
mFile.mReader.seek(clusterPos);
final int compressionType = mFile.mReader.read();
InputStream is = null;
if (compressionType <= 1 || compressionType == 8 || compressionType == 9) {
extended = compressionType > 1;
is = mFile.mReader;
}
if (compressionType == 4 || compressionType == 12) {
extended = compressionType == 12;
is = new SingleXZInputStream(mFile.mReader, 41943040);
}
if (compressionType == 5 || compressionType == 13) {
extended = compressionType == 13;
is = new ZstdInputStream(mFile.mReader);
}
if (is == null) throw new IOException("compression type unknown: " + compressionType);
// read the offset list
List<Long> offsets = new ArrayList<>();
byte[] buffer = new byte[extended ? 8 : 4];
// the first offset is a pointer to the first blob, it therefore also points to the
// end of the offset list. Consequently, we name it end_offset because it points there:
is.read(buffer);
long end_offset = extended ? RandomAccessFileZIMInputStream.toEightLittleEndianLong(buffer) : RandomAccessFileZIMInputStream.toFourLittleEndianInteger(buffer);
// even if it is the end of the offsets, it is the first offset pointer in the list of offsets
offsets.add(end_offset);
// when divided by the pointer size, the offset to the first blob is the number of offsets pointers
int offset_count = (int) (end_offset / (extended ? 8 : 4));
// there are now (offset_count - 1) remaining pointers left to read.
// however, the last offset does not point to a final blob, it points to the end
// of the last blob. The number of blobs is therefore offset_count - 1
for (int i = 0; i < offset_count - 1; i++) {
is.read(buffer);
long l = extended ? RandomAccessFileZIMInputStream.toEightLittleEndianLong(buffer) : RandomAccessFileZIMInputStream.toFourLittleEndianInteger(buffer);
offsets.add(l);
}
// now all document sizes are known because they are defined by the offset deltas
// the seek position should be now at the beginning of the first document
this.blobs = new ArrayList<>();
for (int i = 0; i < offsets.size() - 1; i++) { // loop until the size - 1 because the last offset is the end of the last document
int length = (int) (offsets.get(i + 1) - offsets.get(i)); // yes the maximum document length is 2GB, for now
byte[] b = new byte[length];
RandomAccessFileZIMInputStream.readFully(is, b);
this.blobs.add(b);
}
}
public byte[] getBlob(int i) {
return this.blobs.get(i);
}
public int getSize() {
return this.blobs.size();
}
}
public byte[] getArticleData(final DirectoryEntry directoryInfo) throws IOException {
// fail fast
if (directoryInfo == null) return null;
if (directoryInfo.getClass() != ArticleEntry.class) return null;
// This is now an article, so thus we can cast to ArticleEntry
final ArticleEntry article = (ArticleEntry) directoryInfo;
// Read the cluster
Cluster c = getCluster(article.cluster_number);
// read the blob
byte[] blob = c.getBlob(article.blob_number);
return blob;
}
/*
public byte[] getArticleData(final DirectoryEntry directoryInfo) throws IOException {
// fail fast
if (directoryInfo == null) return null;
if (directoryInfo.getClass() != ArticleEntry.class) return null;
// This is now an article, so thus we can cast to ArticleEntry
final ArticleEntry article = (ArticleEntry) directoryInfo;
// Read the location of the cluster
final long clusterPos = this.mFile.geClusterPtr(article.cluster_number);
// Move to the cluster
this.mFile.mReader.seek(clusterPos);
// Read the first byte, for compression information
final int compressionType = this.mFile.mReader.read();
// Check the compression type that was read
// type = 1 uncompressed
if (compressionType <= 1 || compressionType == 8 || compressionType == 9) {
boolean extended = compressionType > 1;
return readClusterEntry(this.mFile.mReader, article.blob_number, extended);
}
// 2 for zlib and 3 for bzip2 (removed)
// LZMA2 compressed data
if (compressionType == 4 || compressionType == 12) {
boolean extended = compressionType == 12;
// Create a dictionary with size 40MiB, the zimlib uses this size while creating
SingleXZInputStream xzReader= new SingleXZInputStream(this.mFile.mReader, 41943040);
return readClusterEntry(xzReader, article.blob_number, extended);
}
// Zstandard compressed data
if (compressionType == 5 || compressionType == 13) {
boolean extended = compressionType == 13;
ZstdInputStream zReader = new ZstdInputStream(this.mFile.mReader);
return readClusterEntry(zReader, article.blob_number, extended);
}
return null;
}
private static byte[] readClusterEntry(InputStream is, int blob_number, boolean extended) throws IOException {
// Read the first 4(8) bytes to find out the number of articles
byte[] buffer = new byte[extended ? 8 : 4];
// The first four (eight) bytes are the offset of the zeroth blob
is.read(buffer);
long firstOffset = extended? RandomAccessFileZIMInputStream.toEightLittleEndianLong(buffer) : RandomAccessFileZIMInputStream.toFourLittleEndianInteger(buffer);
// The number of blobs can be computed by the offset
// the actual number is one less because there is one more offset entry than the actual number
// to identify the end of the last blob.
long numberOfBlobs1 = extended ? firstOffset / 8 : firstOffset / 4;
// The blobNumber has to be lesser than the numberOfBlobs - 1
// the blob numbers start with 0 even if the documentation states it is "the first blob".
assert blob_number < numberOfBlobs1 - 1;
long offset1;
if (blob_number == 0) {
// The first offset is what we read earlier
offset1 = firstOffset;
} else {
// skip one less than required to get to the offset entry because the first entry is already read
RandomAccessFileZIMInputStream.skipFully(is, (blob_number - 1) * (extended ? 8 : 4));
is.read(buffer);
offset1 = extended? RandomAccessFileZIMInputStream.toEightLittleEndianLong(buffer) : RandomAccessFileZIMInputStream.toFourLittleEndianInteger(buffer);
}
is.read(buffer);
long offset2 = extended? RandomAccessFileZIMInputStream.toEightLittleEndianLong(buffer) : RandomAccessFileZIMInputStream.toFourLittleEndianInteger(buffer);
long blob_size = offset2 - offset1;
if (blob_size == 0) return new byte[0]; // skip the skipping to get to a zero-length object (they exist!)
byte[] entry = new byte[(int) blob_size]; // TODO: we should be able to read blobs larger than MAXINT
// we must do two skip steps: first to the end of the offset list and second to the start of the blob
// - the whole number of offset list entries is numberOfBlobs1, which includes the extra entry for the end offset
// - the number of offset entries that we alreay read now is article.blob_number + 2 (in any case at least 2)
// - the remaining number of offset entries to skip is therefore numberOfBlobs1 - (article.blob_number + 2)
// - the addon skip of number of bytes to the start of the entry is offset1 - firstoffset with firstoffset = 4 * numberOfBlobs1
// - the full skip length is 4 * (numberOfBlobs1 - (article.blob_number + 2)) + offset1 - 4 * numberOfBlobs1
// = offset1 - 4 * (article.blob_number + 2)
RandomAccessFileZIMInputStream.skipFully(is, (offset1 - (extended ? 8 : 4) * (blob_number + 2)));
RandomAccessFileZIMInputStream.readFully(is, entry);
return entry;
}
*/
}