You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
20 KiB
496 lines
20 KiB
// kelondroMSetTools.java
|
|
// -------------------------------------
|
|
// (C) by Michael Peter Christen; mc@yacy.net
|
|
// first published on http://www.anomic.de
|
|
// Frankfurt, Germany, 2004
|
|
// last major change: 28.12.2004
|
|
//
|
|
// $LastChangedDate$
|
|
// $LastChangedRevision$
|
|
// $LastChangedBy$
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
package de.anomic.kelondro.util;
|
|
|
|
import java.io.BufferedReader;
|
|
import java.io.File;
|
|
import java.io.FileInputStream;
|
|
import java.io.IOException;
|
|
import java.io.InputStreamReader;
|
|
import java.util.ArrayList;
|
|
import java.util.Collection;
|
|
import java.util.Comparator;
|
|
import java.util.Iterator;
|
|
import java.util.Map;
|
|
import java.util.Set;
|
|
import java.util.TreeMap;
|
|
import java.util.TreeSet;
|
|
|
|
public class SetTools {
|
|
|
|
|
|
//public static Comparator fastStringComparator = fastStringComparator(true);
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// helper methods
|
|
|
|
public static int log2a(int x) {
|
|
// this computes 1 + log2
|
|
// it is the number of bits in x, not the logarithmus by 2
|
|
int l = 0;
|
|
while (x > 0) {x = x >>> 1; l++;}
|
|
return l;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// join
|
|
// We distinguish two principal solutions
|
|
// - constructive join (generate new data structure)
|
|
// - destructive join (remove non-valid elements from given data structure)
|
|
// The algorithm to perform the join can be also of two kind:
|
|
// - join by pairwise enumeration
|
|
// - join by iterative tests (where we distinguish left-right and right-left tests)
|
|
|
|
|
|
public static <A, B> TreeMap<A, B> joinConstructive(final Collection<TreeMap<A, B>> maps, final boolean concatStrings) {
|
|
// this joins all TreeMap(s) contained in maps
|
|
|
|
// first order entities by their size
|
|
final TreeMap<Long, TreeMap<A, B>> orderMap = new TreeMap<Long, TreeMap<A, B>>();
|
|
TreeMap<A, B> singleMap;
|
|
final Iterator<TreeMap<A, B>> i = maps.iterator();
|
|
int count = 0;
|
|
while (i.hasNext()) {
|
|
// get next entity:
|
|
singleMap = i.next();
|
|
|
|
// check result
|
|
if ((singleMap == null) || (singleMap.size() == 0)) return new TreeMap<A, B>();
|
|
|
|
// store result in order of result size
|
|
orderMap.put(Long.valueOf(singleMap.size() * 1000 + count), singleMap);
|
|
count++;
|
|
}
|
|
|
|
// check if there is any result
|
|
if (orderMap.size() == 0) return new TreeMap<A, B>();
|
|
|
|
// we now must pairwise build up a conjunction of these maps
|
|
Long k = orderMap.firstKey(); // the smallest, which means, the one with the least entries
|
|
TreeMap<A, B> mapA, mapB, joinResult = orderMap.remove(k);
|
|
while ((orderMap.size() > 0) && (joinResult.size() > 0)) {
|
|
// take the first element of map which is a result and combine it with result
|
|
k = orderMap.firstKey(); // the next smallest...
|
|
mapA = joinResult;
|
|
mapB = orderMap.remove(k);
|
|
joinResult = joinConstructiveByTest(mapA, mapB, concatStrings); // TODO: better with enumeration?
|
|
// free resources
|
|
mapA = null;
|
|
mapB = null;
|
|
}
|
|
|
|
// in 'searchResult' is now the combined search result
|
|
if (joinResult.size() == 0) return new TreeMap<A, B>();
|
|
return joinResult;
|
|
}
|
|
|
|
public static <A, B> TreeMap<A, B> joinConstructive(final TreeMap<A, B> map1, final TreeMap<A, B> map2, final boolean concatStrings) {
|
|
// comparators must be equal
|
|
if ((map1 == null) || (map2 == null)) return null;
|
|
if (map1.comparator() != map2.comparator()) return null;
|
|
if ((map1.size() == 0) || (map2.size() == 0)) return new TreeMap<A, B>(map1.comparator());
|
|
|
|
// decide which method to use
|
|
final int high = ((map1.size() > map2.size()) ? map1.size() : map2.size());
|
|
final int low = ((map1.size() > map2.size()) ? map2.size() : map1.size());
|
|
final int stepsEnum = 10 * (high + low - 1);
|
|
final int stepsTest = 12 * log2a(high) * low;
|
|
|
|
// start most efficient method
|
|
if (stepsEnum > stepsTest) {
|
|
if (map1.size() > map2.size()) return joinConstructiveByTest(map2, map1, concatStrings);
|
|
return joinConstructiveByTest(map1, map2, concatStrings);
|
|
}
|
|
return joinConstructiveByEnumeration(map1, map2, concatStrings);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private static <A, B> TreeMap<A, B> joinConstructiveByTest(final TreeMap<A, B> small, final TreeMap<A, B> large, final boolean concatStrings) {
|
|
final Iterator<Map.Entry<A, B>> mi = small.entrySet().iterator();
|
|
final TreeMap<A, B> result = new TreeMap<A, B>(large.comparator());
|
|
Map.Entry<A, B> mentry1;
|
|
B mobj2;
|
|
while (mi.hasNext()) {
|
|
mentry1 = mi.next();
|
|
mobj2 = large.get(mentry1.getKey());
|
|
if (mobj2 != null) {
|
|
if (mentry1.getValue() instanceof String) {
|
|
result.put(mentry1.getKey(), (B) ((concatStrings) ? (mentry1.getValue() + (String) mobj2) : mentry1.getValue()));
|
|
} else {
|
|
result.put(mentry1.getKey(), mentry1.getValue());
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private static <A, B> TreeMap<A, B> joinConstructiveByEnumeration(final TreeMap<A, B> map1, final TreeMap<A, B> map2, final boolean concatStrings) {
|
|
// implement pairwise enumeration
|
|
final Comparator<? super A> comp = map1.comparator();
|
|
final Iterator<Map.Entry<A, B>> mi1 = map1.entrySet().iterator();
|
|
final Iterator<Map.Entry<A, B>> mi2 = map2.entrySet().iterator();
|
|
final TreeMap<A, B> result = new TreeMap<A, B>(map1.comparator());
|
|
int c;
|
|
if ((mi1.hasNext()) && (mi2.hasNext())) {
|
|
Map.Entry<A, B> mentry1 = mi1.next();
|
|
Map.Entry<A, B> mentry2 = mi2.next();
|
|
while (true) {
|
|
c = comp.compare(mentry1.getKey(), mentry2.getKey());
|
|
if (c < 0) {
|
|
if (mi1.hasNext()) mentry1 = mi1.next(); else break;
|
|
} else if (c > 0) {
|
|
if (mi2.hasNext()) mentry2 = mi2.next(); else break;
|
|
} else {
|
|
if (mentry1.getValue() instanceof String) {
|
|
result.put(mentry1.getKey(), (B) ((concatStrings) ? ((String) mentry1.getValue() + (String) mentry2.getValue()) : (String) mentry1.getValue()));
|
|
} else {
|
|
result.put(mentry1.getKey(), mentry1.getValue());
|
|
}
|
|
if (mi1.hasNext()) mentry1 = mi1.next(); else break;
|
|
if (mi2.hasNext()) mentry2 = mi2.next(); else break;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// now the same for set-set
|
|
public static <A> TreeSet<A> joinConstructive(final TreeSet<A> set1, final TreeSet<A> set2) {
|
|
// comparators must be equal
|
|
if ((set1 == null) || (set2 == null)) return null;
|
|
if (set1.comparator() != set2.comparator()) return null;
|
|
if ((set1.size() == 0) || (set2.size() == 0)) return new TreeSet<A>(set1.comparator());
|
|
|
|
// decide which method to use
|
|
final int high = ((set1.size() > set2.size()) ? set1.size() : set2.size());
|
|
final int low = ((set1.size() > set2.size()) ? set2.size() : set1.size());
|
|
final int stepsEnum = 10 * (high + low - 1);
|
|
final int stepsTest = 12 * log2a(high) * low;
|
|
|
|
// start most efficient method
|
|
if (stepsEnum > stepsTest) {
|
|
if (set1.size() < set2.size()) return joinConstructiveByTest(set1, set2);
|
|
return joinConstructiveByTest(set2, set1);
|
|
}
|
|
return joinConstructiveByEnumeration(set1, set2);
|
|
}
|
|
|
|
private static <A> TreeSet<A> joinConstructiveByTest(final TreeSet<A> small, final TreeSet<A> large) {
|
|
final Iterator<A> mi = small.iterator();
|
|
final TreeSet<A> result = new TreeSet<A>(small.comparator());
|
|
A o;
|
|
while (mi.hasNext()) {
|
|
o = mi.next();
|
|
if (large.contains(o)) result.add(o);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private static <A> TreeSet<A> joinConstructiveByEnumeration(final TreeSet<A> set1, final TreeSet<A> set2) {
|
|
// implement pairvise enumeration
|
|
final Comparator<? super A> comp = set1.comparator();
|
|
final Iterator<A> mi = set1.iterator();
|
|
final Iterator<A> si = set2.iterator();
|
|
final TreeSet<A> result = new TreeSet<A>(set1.comparator());
|
|
int c;
|
|
if ((mi.hasNext()) && (si.hasNext())) {
|
|
A mobj = mi.next();
|
|
A sobj = si.next();
|
|
while (true) {
|
|
c = comp.compare(mobj, sobj);
|
|
if (c < 0) {
|
|
if (mi.hasNext()) mobj = mi.next(); else break;
|
|
} else if (c > 0) {
|
|
if (si.hasNext()) sobj = si.next(); else break;
|
|
} else {
|
|
result.add(mobj);
|
|
if (mi.hasNext()) mobj = mi.next(); else break;
|
|
if (si.hasNext()) sobj = si.next(); else break;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// now the same for set-set
|
|
public static <A> boolean anymatch(final TreeSet<A> set1, final TreeSet<A> set2) {
|
|
// comparators must be equal
|
|
if ((set1 == null) || (set2 == null)) return false;
|
|
if (set1.comparator() != set2.comparator()) return false;
|
|
if ((set1.size() == 0) || (set2.size() == 0)) return false;
|
|
|
|
// decide which method to use
|
|
final int high = ((set1.size() > set2.size()) ? set1.size() : set2.size());
|
|
final int low = ((set1.size() > set2.size()) ? set2.size() : set1.size());
|
|
final int stepsEnum = 10 * (high + low - 1);
|
|
final int stepsTest = 12 * log2a(high) * low;
|
|
|
|
// start most efficient method
|
|
if (stepsEnum > stepsTest) {
|
|
if (set1.size() < set2.size()) return anymatchByTest(set1, set2);
|
|
return anymatchByTest(set2, set1);
|
|
}
|
|
return anymatchByEnumeration(set1, set2);
|
|
}
|
|
|
|
private static <A> boolean anymatchByTest(final TreeSet<A> small, final TreeSet<A> large) {
|
|
final Iterator<A> mi = small.iterator();
|
|
A o;
|
|
while (mi.hasNext()) {
|
|
o = mi.next();
|
|
if (large.contains(o)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private static <A> boolean anymatchByEnumeration(final TreeSet<A> set1, final TreeSet<A> set2) {
|
|
// implement pairvise enumeration
|
|
final Comparator<? super A> comp = set1.comparator();
|
|
final Iterator<A> mi = set1.iterator();
|
|
final Iterator<A> si = set2.iterator();
|
|
int c;
|
|
if ((mi.hasNext()) && (si.hasNext())) {
|
|
A mobj = mi.next();
|
|
A sobj = si.next();
|
|
while (true) {
|
|
c = comp.compare(mobj, sobj);
|
|
if (c < 0) {
|
|
if (mi.hasNext()) mobj = mi.next(); else break;
|
|
} else if (c > 0) {
|
|
if (si.hasNext()) sobj = si.next(); else break;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// exclude
|
|
|
|
/*
|
|
public static <A, B> TreeMap<A, B> excludeConstructive(final TreeMap<A, B> map, final Set<A> set) {
|
|
if (map == null) return null;
|
|
if (set == null) return map;
|
|
if ((map.size() == 0) || (set.size() == 0)) return map;
|
|
assert !(set instanceof TreeSet) || map.comparator() == ((TreeSet<A>) set).comparator();
|
|
// if (map.comparator() != set.comparator()) return excludeConstructiveByTestMapInSet(map, set);
|
|
return excludeConstructiveByTestMapInSet(map, set);
|
|
// return excludeConstructiveByEnumeration(map, set);
|
|
}
|
|
|
|
private static <A, B> TreeMap<A, B> excludeConstructiveByTestMapInSet(final TreeMap<A, B> map, final Set<A> set) {
|
|
final TreeMap<A, B> result = new TreeMap<A, B>(map.comparator());
|
|
A o;
|
|
for (Entry<A, B> entry: map.entrySet()) {
|
|
o = entry.getKey();
|
|
if (!(set.contains(o))) result.put(o, entry.getValue());
|
|
}
|
|
return result;
|
|
}
|
|
*/
|
|
|
|
public static <A, B> void excludeDestructive(final Map<A, B> map, final Set<A> set) {
|
|
// comparators must be equal
|
|
if (map == null) return;
|
|
if (set == null) return;
|
|
assert !(map instanceof TreeMap && set instanceof TreeSet) || ((TreeMap<A, B>) map).comparator() == ((TreeSet<A>) set).comparator();
|
|
if ((map.size() == 0) || (set.size() == 0)) return;
|
|
|
|
if (map.size() < set.size())
|
|
excludeDestructiveByTestMapInSet(map, set);
|
|
else
|
|
excludeDestructiveByTestSetInMap(map, set);
|
|
}
|
|
|
|
private static <A, B> void excludeDestructiveByTestMapInSet(final Map<A, B> map, final Set<A> set) {
|
|
final Iterator<A> mi = map.keySet().iterator();
|
|
while (mi.hasNext()) if (set.contains(mi.next())) mi.remove();
|
|
}
|
|
|
|
private static <A, B> void excludeDestructiveByTestSetInMap(final Map<A, B> map, final Set<A> set) {
|
|
final Iterator<A> si = set.iterator();
|
|
while (si.hasNext()) map.remove(si.next());
|
|
}
|
|
|
|
// and the same again with set-set
|
|
public static <A> void excludeDestructive(final Set<A> set1, final Set<A> set2) {
|
|
if (set1 == null) return;
|
|
if (set2 == null) return;
|
|
assert !(set1 instanceof TreeSet && set2 instanceof TreeSet) || ((TreeSet<A>) set1).comparator() == ((TreeSet<A>) set2).comparator();
|
|
if ((set1.size() == 0) || (set2.size() == 0)) return;
|
|
|
|
if (set1.size() < set2.size())
|
|
excludeDestructiveByTestSmallInLarge(set1, set2);
|
|
else
|
|
excludeDestructiveByTestLargeInSmall(set1, set2);
|
|
}
|
|
|
|
private static <A> void excludeDestructiveByTestSmallInLarge(final Set<A> small, final Set<A> large) {
|
|
final Iterator<A> mi = small.iterator();
|
|
while (mi.hasNext()) if (large.contains(mi.next())) mi.remove();
|
|
}
|
|
|
|
private static <A> void excludeDestructiveByTestLargeInSmall(final Set<A> large, final Set<A> small) {
|
|
final Iterator<A> si = small.iterator();
|
|
while (si.hasNext()) large.remove(si.next());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
public static TreeMap<String, String> loadMap(final String filename, final String sep) {
|
|
final TreeMap<String, String> map = new TreeMap<String, String>();
|
|
BufferedReader br = null;
|
|
try {
|
|
br = new BufferedReader(new InputStreamReader(new FileInputStream(filename)));
|
|
String line;
|
|
int pos;
|
|
while ((line = br.readLine()) != null) {
|
|
line = line.trim();
|
|
if ((line.length() > 0) && (!(line.startsWith("#"))) && ((pos = line.indexOf(sep)) > 0))
|
|
map.put(line.substring(0, pos).trim().toLowerCase(), line.substring(pos + sep.length()).trim());
|
|
}
|
|
} catch (final IOException e) {
|
|
} finally {
|
|
if (br != null) try { br.close(); } catch (final Exception e) {}
|
|
}
|
|
return map;
|
|
}
|
|
|
|
public static TreeMap<String, ArrayList<String>> loadMapMultiValsPerKey(final String filename, final String sep) {
|
|
final TreeMap<String, ArrayList<String>> map = new TreeMap<String, ArrayList<String>>();
|
|
BufferedReader br = null;
|
|
try {
|
|
br = new BufferedReader(new InputStreamReader(new FileInputStream(filename)));
|
|
String line, key, value;
|
|
int pos;
|
|
while ((line = br.readLine()) != null) {
|
|
line = line.trim();
|
|
if ((line.length() > 0) && (!(line.startsWith("#"))) && ((pos = line.indexOf(sep)) > 0)) {
|
|
key = line.substring(0, pos).trim().toLowerCase();
|
|
value = line.substring(pos + sep.length()).trim();
|
|
if (!map.containsKey(key)) map.put(key, new ArrayList<String>());
|
|
map.get(key).add(value);
|
|
}
|
|
}
|
|
} catch (final IOException e) {
|
|
} finally {
|
|
if (br != null) try { br.close(); } catch (final Exception e) {}
|
|
}
|
|
return map;
|
|
}
|
|
|
|
public static TreeSet<String> loadList(final File file, final Comparator<String> c) {
|
|
final TreeSet<String> list = new TreeSet<String>(c);
|
|
if (!(file.exists())) return list;
|
|
|
|
BufferedReader br = null;
|
|
try {
|
|
br = new BufferedReader(new InputStreamReader(new FileInputStream(file)));
|
|
String line;
|
|
while ((line = br.readLine()) != null) {
|
|
line = line.trim();
|
|
if ((line.length() > 0) && (!(line.startsWith("#")))) list.add(line.trim().toLowerCase());
|
|
}
|
|
br.close();
|
|
} catch (final IOException e) {
|
|
} finally {
|
|
if (br != null) try{br.close();}catch(final Exception e){}
|
|
}
|
|
return list;
|
|
}
|
|
|
|
public static String setToString(final TreeSet<byte[]> set, final char separator) {
|
|
final Iterator<byte[]> i = set.iterator();
|
|
final StringBuilder sb = new StringBuilder(set.size() * 7);
|
|
if (i.hasNext()) sb.append(new String(i.next()));
|
|
while (i.hasNext()) {
|
|
sb.append(separator).append(new String(i.next()));
|
|
}
|
|
return sb.toString();
|
|
}
|
|
public static String setToString(final Set<String> set, final char separator) {
|
|
final Iterator<String> i = set.iterator();
|
|
final StringBuilder sb = new StringBuilder(set.size() * 7);
|
|
if (i.hasNext()) sb.append(i.next());
|
|
while (i.hasNext()) {
|
|
sb.append(separator).append(i.next());
|
|
}
|
|
return sb.toString();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
|
public static void main(final String[] args) {
|
|
final TreeMap<String, String> m = new TreeMap<String, String>();
|
|
final TreeMap<String, String> s = new TreeMap<String, String>();
|
|
m.put("a", "a");
|
|
m.put("x", "x");
|
|
m.put("f", "f");
|
|
m.put("h", "h");
|
|
m.put("w", "w");
|
|
m.put("7", "7");
|
|
m.put("t", "t");
|
|
m.put("k", "k");
|
|
m.put("y", "y");
|
|
m.put("z", "z");
|
|
s.put("a", "a");
|
|
s.put("b", "b");
|
|
s.put("c", "c");
|
|
s.put("k", "k");
|
|
s.put("l", "l");
|
|
s.put("m", "m");
|
|
s.put("n", "n");
|
|
s.put("o", "o");
|
|
s.put("p", "p");
|
|
s.put("q", "q");
|
|
s.put("r", "r");
|
|
s.put("s", "s");
|
|
s.put("t", "t");
|
|
s.put("x", "x");
|
|
System.out.println("Compare " + m.toString() + " with " + s.toString());
|
|
System.out.println("Join=" + joinConstructiveByEnumeration(m, s, true));
|
|
System.out.println("Join=" + joinConstructiveByTest(m, s, true));
|
|
System.out.println("Join=" + joinConstructiveByTest(m, s, true));
|
|
System.out.println("Join=" + joinConstructive(m, s, true));
|
|
//System.out.println("Exclude=" + excludeConstructiveByTestMapInSet(m, s.keySet()));
|
|
|
|
/*
|
|
for (int low = 0; low < 10; low++)
|
|
for (int high = 0; high < 100; high=high + 10) {
|
|
int stepsEnum = 10 * high;
|
|
int stepsTest = 12 * log2(high) * low;
|
|
System.out.println("low=" + low + ", high=" + high + ", stepsEnum=" + stepsEnum + ", stepsTest=" + stepsTest + "; best method is " + ((stepsEnum < stepsTest) ? "joinByEnumeration" : "joinByTest"));
|
|
}
|
|
*/
|
|
|
|
}
|
|
|
|
}
|