You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
yacy_search_server/source/de/anomic/yacy/dht/FlatWordPartitionScheme.java

155 lines
6.2 KiB

// FlatWordPartitionScheme.java
// ------------------------------
// part of YaCy
// (C) 2009 by Michael Peter Christen; mc@yacy.net
// first published on http://yacy.net
// Frankfurt, Germany, 28.01.2009
//
// $LastChangedDate: 2009-01-23 16:32:27 +0100 (Fr, 23 Jan 2009) $
// $LastChangedRevision: 5514 $
// $LastChangedBy: orbiter $
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package de.anomic.yacy.dht;
import java.util.Random;
import java.util.TreeMap;
import net.yacy.kelondro.index.HandleMap;
import net.yacy.kelondro.index.RowSpaceExceededException;
import net.yacy.kelondro.logging.Log;
import net.yacy.kelondro.order.Base64Order;
import net.yacy.kelondro.util.MemoryControl;
import de.anomic.yacy.yacySeed;
/**
* A flat word partition scheme is a metric for words on the range of a distributed
* hash table. The dht is reflected by a 0..Long.MAX_VALUE integer range, each word gets
* a number on that range. To compute a number, the hash representation is used to compute
* the hash position from the first 63 bits of the b64 hash string.
*/
public class FlatWordPartitionScheme implements PartitionScheme {
public static final FlatWordPartitionScheme std = new FlatWordPartitionScheme();
public FlatWordPartitionScheme() {
// nothing to initialize
}
public int verticalPartitions() {
return 1;
}
public long dhtPosition(byte[] wordHash, String urlHash) {
// the urlHash has no relevance here
// normalized to Long.MAX_VALUE
return Base64Order.enhancedCoder.cardinal(wordHash);
}
public final long dhtDistance(final byte[] word, final String urlHash, final yacySeed peer) {
return dhtDistance(word, urlHash, peer.hash.getBytes());
}
private final long dhtDistance(final byte[] from, final String urlHash, final byte[] to) {
// the dht distance is a positive value between 0 and 1
// if the distance is small, the word more probably belongs to the peer
assert to != null;
assert from != null;
final long toPos = dhtPosition(to, null);
final long fromPos = dhtPosition(from, urlHash);
return dhtDistance(fromPos, toPos);
}
public long dhtPosition(byte[] wordHash, int verticalPosition) {
return dhtPosition(wordHash, null);
}
public long[] dhtPositions(byte[] wordHash) {
long[] l = new long[1];
l[1] = dhtPosition(wordHash, null);
return l;
}
public int verticalPosition(byte[] urlHash) {
return 0; // this is not a method stub, this is actually true for all FlatWordPartitionScheme
}
public final static long dhtDistance(final long fromPos, final long toPos) {
return (toPos >= fromPos) ?
toPos - fromPos :
(Long.MAX_VALUE - fromPos) + toPos + 1;
}
public static byte[] positionToHash(final long l) {
// transform the position of a peer position into a close peer hash
String s = new String(Base64Order.enhancedCoder.uncardinal(l));
while (s.length() < 12) s += "A";
return s.getBytes();
}
public static void main(String[] args) {
int count = (args.length == 0) ? 1000000 : Integer.parseInt(args[0]);
System.out.println("Starting test with " + count + " objects");
System.out.println("expected memory: " + (count * 16) + " bytes");
System.out.println("available memory: " + MemoryControl.available());
Random r = new Random(0);
long start = System.currentTimeMillis();
System.gc(); // for resource measurement
long a = MemoryControl.available();
HandleMap idx = new HandleMap(12, Base64Order.enhancedCoder, 4, 150000);
for (int i = 0; i < count; i++) {
try {
idx.inc(FlatWordPartitionScheme.positionToHash(r.nextInt(count)));
} catch (RowSpaceExceededException e) {
Log.logException(e);
break;
}
}
long timek = ((long) count) * 1000L / (System.currentTimeMillis() - start);
System.out.println("Result HandleMap: " + timek + " inc per second");
System.gc();
long memk = a - MemoryControl.available();
System.out.println("Used Memory: " + memk + " bytes");
System.out.println("x " + idx.get(FlatWordPartitionScheme.positionToHash(0)));
idx = null;
r = new Random(0);
start = System.currentTimeMillis();
byte[] hash;
Integer d;
System.gc(); // for resource measurement
a = MemoryControl.available();
TreeMap<byte[], Integer> hm = new TreeMap<byte[], Integer>(Base64Order.enhancedCoder);
for (int i = 0; i < count; i++) {
hash = FlatWordPartitionScheme.positionToHash(r.nextInt(count));
d = hm.get(hash);
if (d == null) hm.put(hash, 1); else hm.put(hash, d + 1);
}
long timej = ((long) count) * 1000L / (System.currentTimeMillis() - start);
System.out.println("Result TreeMap: " + timej + " inc per second");
System.gc();
long memj = a - MemoryControl.available();
System.out.println("Used Memory: " + memj + " bytes");
System.out.println("x " + hm.get(FlatWordPartitionScheme.positionToHash(0)));
System.out.println("Geschwindigkeitsfaktor j/k: " + ((float) (10 * timej / timek) / 10.0) + " - je kleiner desto besser fuer kelondro");
System.out.println("Speicherplatzfaktor j/k: " + ((float) (10 * memj / memk) / 10.0) + " - je groesser desto besser fuer kelondro");
System.exit(0);
}
}