You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1075 lines
46 KiB
1075 lines
46 KiB
/**
|
|
* RasterPlotter
|
|
* Copyright 2005 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
|
|
* First released 16.09.2005 at http://yacy.net
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program in the file lgpl21.txt
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
package net.yacy.visualization;
|
|
|
|
import java.awt.Color;
|
|
import java.awt.Graphics2D;
|
|
import java.awt.Transparency;
|
|
import java.awt.color.ColorSpace;
|
|
import java.awt.image.BufferedImage;
|
|
import java.awt.image.ColorModel;
|
|
import java.awt.image.ComponentColorModel;
|
|
import java.awt.image.ComponentSampleModel;
|
|
import java.awt.image.DataBuffer;
|
|
import java.awt.image.DataBufferByte;
|
|
import java.awt.image.IndexColorModel;
|
|
import java.awt.image.Raster;
|
|
import java.awt.image.WritableRaster;
|
|
import java.io.BufferedOutputStream;
|
|
import java.io.File;
|
|
import java.io.FileOutputStream;
|
|
import java.io.IOException;
|
|
import java.io.OutputStream;
|
|
import java.util.Set;
|
|
import java.util.TreeSet;
|
|
import java.util.zip.CRC32;
|
|
import java.util.zip.Deflater;
|
|
import java.util.zip.DeflaterOutputStream;
|
|
|
|
import javax.imageio.ImageIO;
|
|
import javax.swing.ImageIcon;
|
|
import javax.swing.JFrame;
|
|
import javax.swing.JLabel;
|
|
|
|
import net.yacy.cora.util.ByteBuffer;
|
|
import net.yacy.cora.util.ConcurrentLog;
|
|
|
|
/**
|
|
* This Class implements some convenience-methods to support drawing of statistical Data
|
|
* It is not intended to replace existing awt-funktions even if it looks so
|
|
* This class provides some drawing methods that creates transparency effects that
|
|
* are not available in awt.
|
|
*/
|
|
public class RasterPlotter {
|
|
|
|
public static final ConcurrentLog log = new ConcurrentLog("RasterPlotter");
|
|
|
|
public static final double PI180 = Math.PI / 180.0d;
|
|
public static final double PI4 = Math.PI / 4.0d;
|
|
public static final double PI2 = Math.PI / 2.0d;
|
|
public static final double PI32 = PI2 * 3.0d;
|
|
public static final double TL = Math.sqrt(3) / 2;
|
|
|
|
// colors regarding RGB Color Model
|
|
public static final long RED = 0xFF0000;
|
|
public static final long GREEN = 0x00FF00;
|
|
public static final long BLUE = 0x0000FF;
|
|
public static final long GREY = 0x888888;
|
|
|
|
public static enum DrawMode {
|
|
MODE_REPLACE, MODE_ADD, MODE_SUB;
|
|
}
|
|
|
|
public static enum FilterMode {
|
|
FILTER_ANTIALIASING, FILTER_BLUR, FILTER_INVERT;
|
|
}
|
|
|
|
protected final int width, height;
|
|
private final int[] cc;
|
|
private BufferedImage image;
|
|
private WritableRaster grid;
|
|
private int defaultColR, defaultColG, defaultColB;
|
|
private final long backgroundCol;
|
|
private DrawMode defaultMode;
|
|
private byte[] frame;
|
|
|
|
public RasterPlotter(final int width, final int height, final DrawMode drawMode, final String backgroundColor) {
|
|
this(width, height, drawMode, Long.parseLong(backgroundColor, 16));
|
|
}
|
|
|
|
public RasterPlotter(final int width, final int height, final DrawMode drawMode, final long backgroundColor) {
|
|
this.cc = new int[3];
|
|
this.width = width;
|
|
this.height = height;
|
|
this.backgroundCol = backgroundColor;
|
|
this.defaultColR = 0xFF;
|
|
this.defaultColG = 0xFF;
|
|
this.defaultColB = 0xFF;
|
|
this.defaultMode = drawMode;
|
|
try {
|
|
// we need our own frame buffer to get a very, very fast transformation to png because we can omit the PixedGrabber, which is up to 800 times slower
|
|
// see: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4835595
|
|
this.frame = new byte[width * height * 3];
|
|
DataBuffer videoBuffer = new DataBufferByte(frame, frame.length);
|
|
ComponentSampleModel sampleModel = new ComponentSampleModel(DataBuffer.TYPE_BYTE, width, height, 3, width * 3, new int[] {0, 1, 2});
|
|
this.grid = Raster.createWritableRaster(sampleModel, videoBuffer, null);
|
|
ColorModel colorModel = new ComponentColorModel(ColorSpace.getInstance(ColorSpace.CS_sRGB), null, false, false, Transparency.OPAQUE, DataBuffer.TYPE_BYTE);
|
|
this.image = new BufferedImage(colorModel, this.grid, false, null);
|
|
} catch (final OutOfMemoryError e) {
|
|
this.frame = null;
|
|
try {
|
|
this.image = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_INDEXED);
|
|
} catch (final OutOfMemoryError ee) {
|
|
try {
|
|
this.image = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_BINARY);
|
|
} catch (final OutOfMemoryError eee) {
|
|
this.image = new BufferedImage(1, 1, BufferedImage.TYPE_BYTE_BINARY);
|
|
}
|
|
}
|
|
this.grid = this.image.getRaster();
|
|
}
|
|
clear();
|
|
}
|
|
|
|
/**
|
|
* Deletes all pixels of image and sets them to previously defined
|
|
* background color.
|
|
*/
|
|
public final void clear() {
|
|
// fill grid with background color
|
|
final int bgR = (int) (this.backgroundCol >> 16);
|
|
final int bgG = (int) ((this.backgroundCol >> 8) & 0xff);
|
|
final int bgB = (int) (this.backgroundCol & 0xff);
|
|
|
|
if (this.frame == null) {
|
|
final Graphics2D gr = this.image.createGraphics();
|
|
Color c = new Color(bgR, bgG, bgB);
|
|
gr.setBackground(c);
|
|
gr.clearRect(0, 0, this.width, this.height);
|
|
gr.setColor(c);
|
|
gr.fillRect(0, 0, this.width, this.height);
|
|
} else {
|
|
int p = 0;
|
|
for (int i = 0; i < width; i++) {
|
|
this.frame[p++] = (byte) bgR;
|
|
this.frame[p++] = (byte) bgG;
|
|
this.frame[p++] = (byte) bgB;
|
|
}
|
|
final int rw = width * 3;
|
|
for (int i = 1; i < height; i++) {
|
|
System.arraycopy(this.frame, 0, this.frame, i * rw, rw);
|
|
}
|
|
}
|
|
}
|
|
|
|
public void setDrawMode(final DrawMode drawMode) {
|
|
this.defaultMode = drawMode;
|
|
}
|
|
|
|
public BufferedImage getImage() {
|
|
return this.image;
|
|
}
|
|
|
|
public int getWidth() {
|
|
return this.width;
|
|
}
|
|
|
|
public int getHeight() {
|
|
return this.height;
|
|
}
|
|
|
|
public static boolean darkColor(final String s) {
|
|
return darkColor(Long.parseLong(s, 16));
|
|
}
|
|
|
|
public static boolean darkColor(final long c) {
|
|
final int r = (int) (c >> 16);
|
|
final int g = (int) ((c >> 8) & 0xff);
|
|
final int b = (int) (c & 0xff);
|
|
return r + g + b < 384;
|
|
}
|
|
|
|
public int[] getPixel(final int x, final int y) {
|
|
return getPixel(x, y, new int[3]);
|
|
}
|
|
|
|
public int[] getPixel(final int x, final int y, int[] c) {
|
|
if (this.frame == null) return this.grid.getPixel(x, y, c);
|
|
int cell = (this.width * y + x) * 3;
|
|
c[0] = this.frame[cell++] & 0xff;
|
|
c[1] = this.frame[cell++] & 0xff;
|
|
c[2] = this.frame[cell++] & 0xff;
|
|
return c;
|
|
}
|
|
|
|
public void setPixel(final int x, final int y, int[] c) {
|
|
if (this.frame == null) {
|
|
this.grid.setPixel(x, y, c);
|
|
return;
|
|
}
|
|
int cell = (this.width * y + x) * 3;
|
|
this.frame[cell++] = (byte) c[0];
|
|
this.frame[cell++] = (byte) c[1];
|
|
this.frame[cell++] = (byte) c[2];
|
|
}
|
|
|
|
public void setColor(final long c) {
|
|
if (this.defaultMode == DrawMode.MODE_SUB) {
|
|
final int r = (int) (c >> 16);
|
|
final int g = (int) ((c >> 8) & 0xff);
|
|
final int b = (int) (c & 0xff);
|
|
this.defaultColR = (g + b) >>> 1; // / 2;
|
|
this.defaultColG = (r + b) >>> 1; // / 2;
|
|
this.defaultColB = (r + g) >>> 1; // / 2;
|
|
} else {
|
|
this.defaultColR = (int) (c >> 16);
|
|
this.defaultColG = (int) ((c >> 8) & 0xff);
|
|
this.defaultColB = (int) (c & 0xff);
|
|
}
|
|
}
|
|
|
|
public void plot(final int x, final int y) {
|
|
plot(x, y, 100);
|
|
}
|
|
|
|
public void plot(final int x, final int y, final int intensity) {
|
|
if ((x < 0) || (x >= this.width)) return;
|
|
if ((y < 0) || (y >= this.height)) return;
|
|
try {
|
|
if (this.defaultMode == DrawMode.MODE_REPLACE) {
|
|
if (intensity == 100) synchronized (this.cc) {
|
|
this.cc[0] = this.defaultColR;
|
|
this.cc[1] = this.defaultColG;
|
|
this.cc[2] = this.defaultColB;
|
|
setPixel(x, y, this.cc);
|
|
} else synchronized (this.cc) {
|
|
final int[] c = getPixel(x, y, this.cc);
|
|
c[0] = (intensity * this.defaultColR + (100 - intensity) * c[0]) / 100;
|
|
c[1] = (intensity * this.defaultColG + (100 - intensity) * c[1]) / 100;
|
|
c[2] = (intensity * this.defaultColB + (100 - intensity) * c[2]) / 100;
|
|
setPixel(x, y, c);
|
|
}
|
|
} else if (this.defaultMode == DrawMode.MODE_ADD) synchronized (this.cc) {
|
|
int[] c = null;
|
|
try {
|
|
c = getPixel(x, y, this.cc);
|
|
} catch (final ArrayIndexOutOfBoundsException e) {
|
|
// catch "Coordinate out of bounds"
|
|
return;
|
|
}
|
|
if (intensity == 100) {
|
|
c[0] = (0xff & c[0]) + this.defaultColR; if (this.cc[0] > 255) this.cc[0] = 255;
|
|
c[1] = (0xff & c[1]) + this.defaultColG; if (this.cc[1] > 255) this.cc[1] = 255;
|
|
c[2] = (0xff & c[2]) + this.defaultColB; if (this.cc[2] > 255) this.cc[2] = 255;
|
|
} else {
|
|
c[0] = (0xff & c[0]) + (intensity * this.defaultColR / 100); if (this.cc[0] > 255) this.cc[0] = 255;
|
|
c[1] = (0xff & c[1]) + (intensity * this.defaultColG / 100); if (this.cc[1] > 255) this.cc[1] = 255;
|
|
c[2] = (0xff & c[2]) + (intensity * this.defaultColB / 100); if (this.cc[2] > 255) this.cc[2] = 255;
|
|
}
|
|
setPixel(x, y, c);
|
|
} else if (this.defaultMode == DrawMode.MODE_SUB) synchronized (this.cc) {
|
|
int[] c = null;
|
|
try {
|
|
c = getPixel(x, y, this.cc);
|
|
} catch (final ArrayIndexOutOfBoundsException e) {
|
|
// catch "Coordinate out of bounds"
|
|
return;
|
|
}
|
|
if (intensity == 100) {
|
|
c[0] = (0xff & c[0]) - this.defaultColR; if (this.cc[0] < 0) this.cc[0] = 0;
|
|
c[1] = (0xff & c[1]) - this.defaultColG; if (this.cc[1] < 0) this.cc[1] = 0;
|
|
c[2] = (0xff & c[2]) - this.defaultColB; if (this.cc[2] < 0) this.cc[2] = 0;
|
|
} else {
|
|
c[0] = (0xff & c[0]) - (intensity * this.defaultColR / 100); if (this.cc[0] < 0) this.cc[0] = 0;
|
|
c[1] = (0xff & c[1]) - (intensity * this.defaultColG / 100); if (this.cc[1] < 0) this.cc[1] = 0;
|
|
c[2] = (0xff & c[2]) - (intensity * this.defaultColB / 100); if (this.cc[2] < 0) this.cc[2] = 0;
|
|
}
|
|
setPixel(x, y, c);
|
|
}
|
|
} catch (final ArrayIndexOutOfBoundsException e) {
|
|
log.warn(e.getMessage() + ": x = " + x + ", y = " + y);
|
|
} // may appear when pixel coordinate is out of bounds
|
|
}
|
|
|
|
public void line(final int Ax, final int Ay, final int Bx, final int By, final int intensity) {
|
|
line(Ax, Ay, Bx, By, null, intensity, null, -1, -1, -1, -1, false);
|
|
}
|
|
|
|
/**
|
|
* draw a line using Bresenham's line drawing algorithm.
|
|
* The line will be plotted together with dots on it, if wanted.
|
|
* @param Ax
|
|
* @param Ay
|
|
* @param Bx
|
|
* @param By
|
|
* @param colorLine
|
|
* @param intensityLine
|
|
* @param colorDot
|
|
* @param intensityDot
|
|
* @param dotDist
|
|
* @param dotPos
|
|
* @param dotRadius
|
|
* @param dotFilled
|
|
*/
|
|
public void line(
|
|
int Ax, int Ay, final int Bx, final int By,
|
|
final Long colorLine, final int intensityLine,
|
|
final Long colorDot, final int intensityDot, final int dotDist, final int dotPos, final int dotRadius, final boolean dotFilled
|
|
) {
|
|
// Bresenham's line drawing algorithm
|
|
int dX = Math.abs(Bx-Ax);
|
|
int dY = Math.abs(By-Ay);
|
|
final int Xincr = (Ax > Bx) ? -1 : 1;
|
|
final int Yincr = (Ay > By) ? -1 : 1;
|
|
int dotc = 0;
|
|
if (dX >= dY) {
|
|
final int dPr = dY<<1;
|
|
final int dPru = dPr - (dX<<1);
|
|
int P = dPr - dX;
|
|
for (; dX >= 0; dX--) {
|
|
if (colorLine != null) this.setColor(colorLine);
|
|
plot(Ax, Ay, intensityLine);
|
|
if (dotc == dotPos) {
|
|
if (colorDot != null) this.setColor(colorDot);
|
|
if (dotRadius == 0) this.plot(Ax, Ay, intensityDot);
|
|
else if (dotRadius > 0) dot(Ax, Ay, dotRadius, dotFilled, intensityDot);
|
|
}
|
|
dotc++;
|
|
if (dotc == dotDist) dotc = 0;
|
|
if (P > 0) {
|
|
Ax += Xincr;
|
|
Ay += Yincr;
|
|
P += dPru;
|
|
} else {
|
|
Ax += Xincr;
|
|
P += dPr;
|
|
}
|
|
}
|
|
} else {
|
|
final int dPr = dX<<1;
|
|
final int dPru = dPr - (dY<<1);
|
|
int P = dPr - dY;
|
|
for (; dY >= 0; dY--) {
|
|
if (colorLine != null) this.setColor(colorLine);
|
|
plot(Ax, Ay, intensityLine);
|
|
if (dotc == dotPos) {
|
|
if (colorDot != null) this.setColor(colorDot);
|
|
if (dotRadius == 0) this.plot(Ax, Ay, intensityDot);
|
|
else if (dotRadius > 0) dot(Ax, Ay, dotRadius, dotFilled, intensityDot);
|
|
}
|
|
dotc++;
|
|
if (dotc == dotDist) dotc = 0;
|
|
if (P > 0) {
|
|
Ax += Xincr;
|
|
Ay += Yincr;
|
|
P += dPru;
|
|
} else {
|
|
Ay += Yincr;
|
|
P += dPr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* draw a line with a dot at the end
|
|
* @param x0 start point
|
|
* @param y0 start point
|
|
* @param x1 end point
|
|
* @param y1 end point
|
|
* @param radius radius of the dot
|
|
* @param padding the distance of the dot border to the end point
|
|
* @param lineColor the color of the line
|
|
* @param dotColor the color of the dot
|
|
*/
|
|
public void lineDot(final int x0, final int y0, final int x1, final int y1, final int radius, final int padding, final long lineColor, final long dotColor) {
|
|
final double dx = x1 - x0; // distance of points, x component
|
|
final double dy = y1 - y0; // distance of points, y component
|
|
final double angle = Math.atan2(dy, dx); // the angle of the line between the points
|
|
final double d = Math.sqrt((dx * dx + dy * dy)); // the distance between the points (Pythagoras)
|
|
final double ddotcenter = d - radius - padding; // distance from {x0, y0} to dot center near {x1, y1}
|
|
final double ddotborder = ddotcenter - radius; // distance to point {x3, y3} at border of dot center at {x2, y2}
|
|
final double xn = Math.cos(angle); // normalized vector component x
|
|
final double yn = Math.sin(angle); // normalized vector component y
|
|
final int x2 = x0 + ((int) (ddotcenter * xn)); // dot center, x component
|
|
final int y2 = y0 + ((int) (ddotcenter * yn)); // dot center, y component
|
|
final int x3 = x0 + ((int) (ddotborder * xn)); // dot border, x component
|
|
final int y3 = y0 + ((int) (ddotborder * yn)); // dot border, y component
|
|
setColor(lineColor); line(x0, y0, x3, y3, 100); // draw line from {x0, y0} to dot border
|
|
setColor(dotColor); dot(x2, y2, radius, true, 100); // draw dot at {x2, y2}
|
|
}
|
|
|
|
/**
|
|
* draw a line with an arrow at the end
|
|
* @param x0 start point
|
|
* @param y0 start point
|
|
* @param x1 end point
|
|
* @param y1 end point
|
|
* @param sidelength the side length of the arrow tip (all 3 sides are equal)
|
|
* @param padding the distance of the arrow tip to the end point
|
|
* @param lineColor the color of the line
|
|
* @param arrowColor the color of the arrow tip
|
|
*/
|
|
public void lineArrow(final int x0, final int y0, final int x1, final int y1, final int sidelength, final int padding, final long lineColor, final long arrowColor) {
|
|
final double dx = x1 - x0; // distance of points, x component
|
|
final double dy = y1 - y0; // distance of points, y component
|
|
final double angle = Math.atan2(dy, dx); // the angle of the line between the points
|
|
final double d = Math.sqrt((dx * dx + dy * dy)); // the distance between the points (Pythagoras)
|
|
final double arrowtip = d - padding; // the distance from {x0, y0} to the arrow tip
|
|
final double arrowlength = TL * sidelength; // the length of the arrow (distance from base to tip)
|
|
final double arrowbase = arrowtip - arrowlength; // the distance from {x0, y0} to the arrow base
|
|
final double xn = Math.cos(angle); // normalized vector component x
|
|
final double yn = Math.sin(angle); // normalized vector component y
|
|
final int xt = x0 + ((int) (arrowtip * xn)); // arrow tip point component x
|
|
final int yt = y0 + ((int) (arrowtip * yn)); // arrow tip point component y
|
|
final double xb = x0 + arrowbase * xn; // arrow base point component x
|
|
final double yb = y0 + arrowbase * yn; // arrow base point component y
|
|
final double sl2 = sidelength / 2.0; // half of the side length
|
|
final double xk = sl2 * Math.cos(angle + PI2); // point at 90 degree on arrow direction to left side, vector component x
|
|
final double yk = sl2 * Math.sin(angle + PI2); // point at 90 degree on arrow direction to left side, vector component y
|
|
final int x2 = (int) (xb + xk);
|
|
final int y2 = (int) (yb + yk);
|
|
final int x3 = (int) (xb - xk);
|
|
final int y3 = (int) (yb - yk);
|
|
setColor(lineColor);
|
|
line(x0, y0, (int) xb, (int) yb, 100); // draw line from {x0, y0} to arrow base
|
|
setColor(arrowColor);
|
|
line(x2, y2, x3, y3, 100); // base line
|
|
line(x2, y2, xt, yt, 100); // left line
|
|
line(x3, y3, xt, yt, 100); // right line
|
|
}
|
|
|
|
public void dot(final int x, final int y, final int radius, final boolean filled, final int intensity) {
|
|
if (filled) {
|
|
for (int r = radius; r >= 0; r--) {
|
|
CircleTool.circle(this, x, y, r, intensity);
|
|
}
|
|
} else {
|
|
CircleTool.circle(this, x, y, radius, intensity);
|
|
}
|
|
}
|
|
|
|
public void arc(final int x, final int y, final int innerRadius, final int outerRadius, final int intensity) {
|
|
for (int r = innerRadius; r <= outerRadius; r++) {
|
|
CircleTool.circle(this, x, y, r, intensity);
|
|
}
|
|
}
|
|
|
|
public void arc(final int x, final int y, final int innerRadius, final int outerRadius, final int fromArc, final int toArc) {
|
|
for (int r = innerRadius; r <= outerRadius; r++) {
|
|
CircleTool.circle(this, x, y, r, fromArc, toArc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* draw a portion of a line from the center of a circle
|
|
* @param cx center of circle, x
|
|
* @param cy center of circle, y
|
|
* @param innerRadius inner radius of line
|
|
* @param outerRadius outer radius of line
|
|
* @param angle angle within the circle for the line
|
|
* @param in direction, if true: inward. This is the moving direction of dots, if dotRadius is alternated from 0 to 360
|
|
* @param colorLine the color of the line
|
|
* @param colorDot the color of the dot
|
|
* @param dotDist the distance of two dots
|
|
* @param dotPos the start position of the first dot
|
|
* @param dotRadius the radius of the dot
|
|
* @param dotFilled if true: dot is filled.
|
|
*/
|
|
public void arcLine(final int cx, final int cy, final int innerRadius, final int outerRadius, final double angle, final boolean in,
|
|
final Long colorLine, final Long colorDot, final int dotDist, final int dotPos, final int dotRadius, final boolean dotFilled) {
|
|
final double a = PI180 * angle;
|
|
final double cosa = Math.cos(a);
|
|
final double sina = Math.sin(a);
|
|
final int xi = cx + (int) (innerRadius * cosa);
|
|
final int yi = cy - (int) (innerRadius * sina);
|
|
final int xo = cx + (int) (outerRadius * cosa);
|
|
final int yo = cy - (int) (outerRadius * sina);
|
|
//line(xi, yi, xo, yo, 100);
|
|
if (in) {
|
|
line(
|
|
xo, yo, xi, yi,
|
|
colorLine, 100,
|
|
colorDot, 100, dotDist, dotPos, dotRadius, dotFilled
|
|
);
|
|
} else {
|
|
line(
|
|
xi, yi, xo, yo,
|
|
colorLine, 100,
|
|
colorDot, 100, dotDist, dotPos, dotRadius, dotFilled
|
|
);
|
|
}
|
|
}
|
|
|
|
public void arcDot(final int cx, final int cy, final int arcRadius, final double angle, final int dotRadius) {
|
|
final double a = PI180 * angle;
|
|
final int x = cx + (int) (arcRadius * Math.cos(a));
|
|
final int y = cy - (int) (arcRadius * Math.sin(a));
|
|
dot(x, y, dotRadius, true, 100);
|
|
}
|
|
|
|
/**
|
|
* draw a connecting line between two points on a circle
|
|
* @param cx center of circle, x
|
|
* @param cy center of circle, y
|
|
* @param arcRadius radius of circle
|
|
* @param angle1 position of dot 1 on circle
|
|
* @param angle2 position of dot 2 on circle
|
|
* @param in direction of dots on line; in=true means: inwards
|
|
* @param colorLine
|
|
* @param intensityLine
|
|
* @param colorDot
|
|
* @param intensityDot
|
|
* @param dotDist
|
|
* @param dotPos
|
|
* @param dotRadius
|
|
* @param dotFilled
|
|
*/
|
|
public void arcConnect(final int cx, final int cy, final int arcRadius, final double angle1, final double angle2, final boolean in,
|
|
final Long colorLine, final int intensityLine,
|
|
final Long colorDot, final int intensityDot, final int dotDist, final int dotPos, final int dotRadius, final boolean dotFilled,
|
|
final String message, final Long colorMessage, final int intensityMessage) {
|
|
final double a1 = PI180 * angle1;
|
|
final double a2 = PI180 * angle2;
|
|
// find positions of points
|
|
final int x1 = cx + (int) (arcRadius * Math.cos(a1));
|
|
final int y1 = cy - (int) (arcRadius * Math.sin(a1));
|
|
final int x2 = cx + (int) (arcRadius * Math.cos(a2));
|
|
final int y2 = cy - (int) (arcRadius * Math.sin(a2));
|
|
// draw the line
|
|
if (in) {
|
|
line(x1, y1, x2, y2,
|
|
colorLine, intensityLine,
|
|
colorDot, intensityDot, dotDist, dotPos, dotRadius, dotFilled);
|
|
} else {
|
|
line(x2, y2, x1, y1,
|
|
colorLine, intensityLine,
|
|
colorDot, intensityDot, dotDist, dotPos, dotRadius, dotFilled);
|
|
}
|
|
// draw a name on the line
|
|
if (message != null && message.length() > 0) {
|
|
this.setColor(colorMessage);
|
|
int xm = (x1 + 5 * x2) / 6;
|
|
int ym = (y1 + 5 * y2) / 6;
|
|
if (ym < cy) ym += 6; else ym -=6;
|
|
if (xm < cx) xm += 6; else xm -=6;
|
|
if (xm > cx) xm -= 6 * message.length();
|
|
PrintTool.print(this, xm, ym, 0, message.toUpperCase(), -1, intensityMessage);
|
|
}
|
|
}
|
|
|
|
public void arcArc(final int cx, final int cy, final int arcRadius, final double angle,
|
|
final int innerRadius, final int outerRadius, final int intensity) {
|
|
final double a = PI180 * angle;
|
|
final int x = cx + (int) (arcRadius * Math.cos(a));
|
|
final int y = cy - (int) (arcRadius * Math.sin(a));
|
|
arc(x, y, innerRadius, outerRadius, intensity);
|
|
}
|
|
|
|
public void arcArc(final int cx, final int cy, final int arcRadius, final double angle,
|
|
final int innerRadius, final int outerRadius, final int fromArc, final int toArc) {
|
|
final double a = PI180 * angle;
|
|
final int x = cx + (int) (arcRadius * Math.cos(a));
|
|
final int y = cy - (int) (arcRadius * Math.sin(a));
|
|
arc(x, y, innerRadius, outerRadius, fromArc, toArc);
|
|
}
|
|
|
|
/**
|
|
* inserts image
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y) {
|
|
insertBitmap(bitmap, x, y, -1);
|
|
}
|
|
|
|
/**
|
|
* inserts image
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
* @param filter chooses filter
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final FilterMode filter) {
|
|
insertBitmap(bitmap, x, y, -1, filter);
|
|
}
|
|
|
|
/**
|
|
* inserts image where all pixels which have the same RGB value as the
|
|
* pixel at (xx, yy) are transparent
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
* @param xx x-value of pixel that determines which color is transparent
|
|
* @param yy y-value of pixel that determines which color is transparent
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int xx, final int yy) {
|
|
insertBitmap(bitmap, x, y, bitmap.getRGB(xx, yy));
|
|
}
|
|
|
|
/**
|
|
* inserts image where all pixels that have the same RGB value as the
|
|
* pixel at (xx, yy) are transparent
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
* @param xx x-value of pixel that determines which color is transparent
|
|
* @param yy y-value of pixel that determines which color is transparent
|
|
* @param filter filter to be applied
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int xx, final int yy, final FilterMode filter) {
|
|
insertBitmap(bitmap, x, y, bitmap.getRGB(xx, yy), filter);
|
|
}
|
|
|
|
/**
|
|
* inserts image where all pixels that have the same RGB value as the
|
|
* pixel at (xx, yy) are transparent
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
* @param rgb RGB value which will be transparent
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int transRGB) {
|
|
final int heightSrc = bitmap.getHeight();
|
|
final int widthSrc = bitmap.getWidth();
|
|
final int heightTgt = this.height;
|
|
final int widthTgt = this.width;
|
|
|
|
int rgb;
|
|
for (int i = 0; i < heightSrc; i++) {
|
|
for (int j = 0; j < widthSrc; j++) {
|
|
// pixel in legal area?
|
|
if (j + x >= 0 && i + y >= 0 && i + y < heightTgt && j + x < widthTgt) {
|
|
rgb = bitmap.getRGB(j, i);
|
|
if (rgb != transRGB) {
|
|
this.image.setRGB(j + x, i + y, rgb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* inserts image where all pixels that have a special RGB value
|
|
* pixel at (xx, yy) are transparent
|
|
* @param bitmap bitmap to be inserted
|
|
* @param x x-value of upper left coordinate where bitmap will be placed
|
|
* @param y y-value of upper left coordinate where bitmap will be placed
|
|
* @param rgb RGB value which will be transparent
|
|
* @param filter filter to be applied
|
|
*/
|
|
public void insertBitmap(final BufferedImage bitmap, final int x, final int y, final int transRGB, final FilterMode filter) {
|
|
insertBitmap(bitmap, x, y, transRGB);
|
|
|
|
final int bitmapWidth = bitmap.getWidth();
|
|
final int bitmapHeight = bitmap.getHeight();
|
|
|
|
if (filter == FilterMode.FILTER_ANTIALIASING) {
|
|
|
|
int transX = -1;
|
|
int transY = -1;
|
|
final int imageWidth = this.image.getWidth();
|
|
final int imageHeight = this.image.getHeight();
|
|
|
|
// find first pixel in bitmap that equals transRGB
|
|
// and also lies in area of image that will be covered by bitmap
|
|
int i = 0;
|
|
int j = 0;
|
|
boolean found = false;
|
|
while ((i < bitmapWidth) && (i + x < imageWidth) && !found) {
|
|
while ((j < bitmapHeight) && (j + y < imageHeight) && !found) {
|
|
if (bitmap.getRGB(i, j) == transRGB) {
|
|
transX = i;
|
|
transY = j;
|
|
found = true;
|
|
}
|
|
j++;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
// if there is a transparent pixel in the bitmap that covers an area
|
|
// of the image, the fiter will be used. If no such pixel has been found that
|
|
// means that there either is no transparent pixel in the bitmap or part
|
|
// of the bitmap that covers part of tha image is not within the borders of
|
|
// the image (i.e. bitmap is larger than image)
|
|
if (transX != -1) {
|
|
filter(x - 1, y - 1, x + bitmapWidth, y + bitmapHeight, filter, this.image.getRGB(transX + x, transY + y));
|
|
}
|
|
|
|
} else {
|
|
filter(x - 1, y - 1, x + bitmapWidth, y + bitmapHeight, filter, -1);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* antialiasing filter for a square part of the image
|
|
* @param ulx x-value for upper left coordinate
|
|
* @param uly y-value for upper left coordinate
|
|
* @param lrx x-value for lower right coordinate
|
|
* @param lry y-value for lower right coordinate
|
|
* @param rgb color of background
|
|
*/
|
|
public void antialiasing(final int ulx, final int uly, final int lrx, final int lry, final int bgcolor) {
|
|
filter(ulx, uly, lrx, lry, FilterMode.FILTER_ANTIALIASING, bgcolor);
|
|
}
|
|
|
|
/**
|
|
* blur filter for a square part of the image
|
|
* @param ulx x-value for upper left coordinate
|
|
* @param uly y-value for upper left coordinate
|
|
* @param lrx x-value for lower right coordinate
|
|
* @param lry y-value for lower right coordinate
|
|
*/
|
|
public void blur(final int ulx, final int uly, final int lrx, final int lry) {
|
|
filter(ulx, uly, lrx, lry, FilterMode.FILTER_BLUR, -1);
|
|
}
|
|
|
|
/**
|
|
* invert filter for a square part of the image
|
|
* @param ulx x-value for upper left coordinate
|
|
* @param uly y-value for upper left coordinate
|
|
* @param lrx x-value for lower right coordinate
|
|
* @param lry y-value for lower right coordinate
|
|
*/
|
|
public void invert(final int ulx, final int uly, final int lrx, final int lry) {
|
|
filter(ulx, uly, lrx, lry, FilterMode.FILTER_INVERT, -1);
|
|
}
|
|
|
|
/**
|
|
* filter for a square part of the ymageMatrix
|
|
* @param ulx x-value for upper left coordinate
|
|
* @param uly y-value for upper left coordinate
|
|
* @param lrx x-value for lower right coordinate
|
|
* @param lry y-value for lower right coordinate
|
|
* @param filter chooses filter
|
|
*/
|
|
private void filter(final int ulx, final int uly, final int lrx, final int lry, final FilterMode filter, final int bgcolor) {
|
|
|
|
// taking care that all values are legal
|
|
final int lox = Math.min(Math.max(Math.min(ulx, lrx), 0), this.width - 1);
|
|
final int loy = Math.min(Math.max(Math.min(uly, lry), 0), this.height -1);
|
|
final int rux = Math.min(Math.max(Math.max(ulx, lrx), 0), this.width - 1);
|
|
final int ruy = Math.min(Math.max(Math.max(uly, lry), 0), this.height -1);
|
|
|
|
int numberOfNeighbours = 0;
|
|
int rgbR = 0;
|
|
int rgbG = 0;
|
|
int rgbB = 0;
|
|
int rgb = 0;
|
|
final int width2 = rux - lox + 1;
|
|
final int height2 = ruy - loy + 1;
|
|
boolean border = false;
|
|
final BufferedImage image2 = new BufferedImage(width2, height2, BufferedImage.TYPE_INT_RGB);
|
|
|
|
for (int i = lox; i < rux + 1; i++) {
|
|
for (int j = loy; j < ruy + 1; j++) {
|
|
|
|
numberOfNeighbours = 0;
|
|
rgbR = 0;
|
|
rgbG = 0;
|
|
rgbB = 0;
|
|
|
|
if (filter == FilterMode.FILTER_ANTIALIASING || filter == FilterMode.FILTER_BLUR) {
|
|
// taking samples from neighbouring pixel
|
|
if (i > lox) {
|
|
rgb = this.image.getRGB(i - 1, j);
|
|
border = (rgb == bgcolor);
|
|
rgbR += rgb >> 16 & 0xff;
|
|
rgbG += rgb >> 8 & 0xff;
|
|
rgbB += rgb & 0xff;
|
|
numberOfNeighbours++;
|
|
}
|
|
if (j > loy) {
|
|
rgb = this.image.getRGB(i, j - 1);
|
|
border = border || (rgb == bgcolor);
|
|
rgbR += rgb >> 16 & 0xff;
|
|
rgbG += rgb >> 8 & 0xff;
|
|
rgbB += rgb & 0xff;
|
|
numberOfNeighbours++;
|
|
}
|
|
if (i < this.width - 1) {
|
|
rgb = this.image.getRGB(i + 1, j);
|
|
border = border || (rgb == bgcolor);
|
|
rgbR += rgb >> 16 & 0xff;
|
|
rgbG += rgb >> 8 & 0xff;
|
|
rgbB += rgb & 0xff;
|
|
numberOfNeighbours++;
|
|
}
|
|
if (i < this.height - 1) {
|
|
rgb = this.image.getRGB(i, j + 1);
|
|
border = border || (rgb == bgcolor);
|
|
rgbR += rgb >> 16 & 0xff;
|
|
rgbG += rgb >> 8 & 0xff;
|
|
rgbB += rgb & 0xff;
|
|
numberOfNeighbours++;
|
|
}
|
|
|
|
}
|
|
|
|
rgb = this.image.getRGB(i, j);
|
|
|
|
// add value of pixel
|
|
// in case filter is used for antialiasing this will only be done if
|
|
// the pixel is on the edge to the background color
|
|
if (filter == FilterMode.FILTER_ANTIALIASING && border || filter == FilterMode.FILTER_BLUR) {
|
|
rgbR += (rgb >> 16 & 0xff);
|
|
rgbG += (rgb >> 8 & 0xff);
|
|
rgbB += (rgb & 0xff);
|
|
numberOfNeighbours++;
|
|
border = false;
|
|
}
|
|
// set to value of pixel => keep value
|
|
else if (filter == FilterMode.FILTER_ANTIALIASING) {
|
|
rgbR = (rgb >> 16 & 0xff);
|
|
rgbG = (rgb >> 8 & 0xff);
|
|
rgbB = (rgb & 0xff);
|
|
numberOfNeighbours = 1;
|
|
}
|
|
// set value of pixel to inverted value (using XOR)
|
|
else if (filter == FilterMode.FILTER_INVERT) {
|
|
rgb = rgb ^ 0xffffff;
|
|
rgbR = (rgb >> 16 & 0xff);
|
|
rgbG = (rgb >> 8 & 0xff);
|
|
rgbB = (rgb & 0xff);
|
|
numberOfNeighbours = 1;
|
|
}
|
|
|
|
// calculating the average
|
|
rgbR = (rgbR / numberOfNeighbours);
|
|
rgbG = (rgbG / numberOfNeighbours);
|
|
rgbB = (rgbB / numberOfNeighbours);
|
|
|
|
rgb = (rgbR << 16) | (rgbG << 8) | rgbB;
|
|
|
|
image2.setRGB(i-lox, j-loy, rgb);
|
|
}
|
|
}
|
|
|
|
// insert new version of area into image
|
|
insertBitmap(image2, lox, loy);
|
|
}
|
|
|
|
public static void demoPaint(final RasterPlotter m) {
|
|
m.setColor(GREY);
|
|
m.line(0, 70, 100, 70, 100); PrintTool.print(m, 0, 65, 0, "Grey", -1, 100);
|
|
m.line(65, 0, 65, 300, 100);
|
|
m.setColor(RED);
|
|
m.line(0, 90, 100, 90, 100); PrintTool.print(m, 0, 85, 0, "Red", -1, 100);
|
|
m.line(70, 0, 70, 300, 100);
|
|
m.setColor(GREEN);
|
|
m.line(0, 110, 100, 110, 100); PrintTool.print(m, 0, 105, 0, "Green", -1, 100);
|
|
m.line(75, 0, 75, 300, 100);
|
|
m.setColor(BLUE);
|
|
m.line(0, 130, 100, 130, 100); PrintTool.print(m, 0, 125, 0, "Blue", -1, 100);
|
|
m.line(80, 0, 80, 300, 100);
|
|
}
|
|
|
|
public BufferedImage toIndexed() {
|
|
Set<Integer> colors = new TreeSet<Integer>();
|
|
int[] c = new int[3];
|
|
for (int y = this.getHeight() - 1; y >= 0; y--) {
|
|
for (int x = this.getWidth() - 1; x >= 0; x--) {
|
|
c = getPixel(x, y, c);
|
|
colors.add((c[0]<<16)|(c[1]<<8)|c[2]);
|
|
}
|
|
}
|
|
int[] cmap = new int[colors.size()];
|
|
int i = 0;
|
|
for (Integer cc: colors) {
|
|
cmap[i++] = cc.intValue();
|
|
if (i > 255) break;
|
|
}
|
|
|
|
int bitCount = 1;
|
|
while ((colors.size() - 1) >> bitCount != 0) bitCount *= 2;
|
|
|
|
IndexColorModel cm = new IndexColorModel(bitCount, colors.size(), cmap, 0, DataBuffer.TYPE_BYTE, null);
|
|
|
|
/*
|
|
byte [] data = null;
|
|
int bytesPerRow = this.getWidth()/8 + (this.getWidth()%8!=0?1:0);
|
|
data = new byte[this.getHeight() * bytesPerRow];
|
|
DataBuffer db = new DataBufferByte(data, data.length);
|
|
WritableRaster wr = Raster.createPackedRaster(db, this.getWidth(), this.getHeight(), 1, null);
|
|
BufferedImage dest = new BufferedImage(cm, wr, false, null);
|
|
*/
|
|
|
|
BufferedImage dest = new BufferedImage(this.getWidth(), this.getHeight(), cm.getPixelSize() < 8 ? BufferedImage.TYPE_BYTE_BINARY : BufferedImage.TYPE_BYTE_INDEXED, cm);
|
|
dest.createGraphics().drawImage(this.getImage(), 0, 0, null);
|
|
return dest;
|
|
}
|
|
|
|
public static BufferedImage convertToIndexed(BufferedImage src) {
|
|
BufferedImage dest = new BufferedImage(src.getWidth(), src.getHeight(), BufferedImage.TYPE_BYTE_INDEXED);
|
|
dest.createGraphics().drawImage(src,0,0, null);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Encode buffered image using specified format to a new ByteBuffer
|
|
* @param image image to encode
|
|
* @param targetExt format name. For example "png".
|
|
* @return a ByteBuffer instance containing encoded data, or empty if an error occured or target format is not supported.
|
|
*/
|
|
public static ByteBuffer exportImage(final BufferedImage image, final String targetExt) {
|
|
// generate an byte array from the given image
|
|
final ByteBuffer baos = new ByteBuffer();
|
|
ImageIO.setUseCache(false); // because we write into ram here
|
|
try {
|
|
/* When no ImageIO writer is found image might no be written*/
|
|
ImageIO.write(image, targetExt, baos);
|
|
return baos;
|
|
} catch (final IOException e) {
|
|
// should not happen
|
|
ConcurrentLog.logException(e);
|
|
return null;
|
|
}
|
|
}
|
|
|
|
public ByteBuffer exportPng() {
|
|
try {
|
|
final ByteBuffer baos = new ByteBuffer();
|
|
byte[] pngbytes = pngEncode(1);
|
|
if (pngbytes == null) return null;
|
|
baos.write(pngbytes);
|
|
baos.flush();
|
|
baos.close();
|
|
return baos;
|
|
} catch (final IOException e) {
|
|
// should not happen
|
|
ConcurrentLog.logException(e);
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* save the image to a file
|
|
* @param file the storage file
|
|
* @param type the file type, may be i.e. 'png' or 'gif'
|
|
* @throws IOException
|
|
*/
|
|
public void save(File file, String type) throws IOException {
|
|
final FileOutputStream fos = new FileOutputStream(file);
|
|
ImageIO.write(this.image, type, fos);
|
|
fos.close();
|
|
}
|
|
|
|
/**
|
|
* show the image as JFrame on desktop
|
|
*/
|
|
public void show() {
|
|
JLabel label = new JLabel(new ImageIcon(this.image));
|
|
JFrame f = new JFrame();
|
|
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
|
f.getContentPane().add(label);
|
|
f.pack();
|
|
f.setVisible(true);
|
|
}
|
|
|
|
/*
|
|
* The following code was transformed from a library, coded by J. David Eisenberg, version 1.5, 19 Oct 2003 (C) LGPL
|
|
* This code was very strongly transformed into the following very short method for an ultra-fast png generation.
|
|
* These changes had been made 23.10.2012 by [MC] to the original code:
|
|
* For the integration into YaCy this class was adopted to YaCy graphics by Michael Christen:
|
|
* - removed alpha encoding
|
|
* - removed not used code
|
|
* - inlined static values
|
|
* - inlined all methods that had been called only once
|
|
* - moved class objects which appear after all refactoring only within a single method into this method
|
|
* - removed a giant number of useless (obvious things) comments and empty lines to increase readability (!)
|
|
* - new order of data computation: first compute the size of compressed deflater output,
|
|
* then assign an exact-sized byte[] which makes resizing afterwards superfluous
|
|
* - after all enhancements all class objects were removed; result is just one short static method
|
|
* - made objects final where possible
|
|
* - removed the PixelGrabber call and replaced it with a call to this.frame which is just a byte[]
|
|
* - added more speed woodoo like a buffer around the deflater which makes this much faster
|
|
*/
|
|
|
|
private static final byte IHDR[] = {73, 72, 68, 82};
|
|
private static final byte IDAT[] = {73, 68, 65, 84};
|
|
private static final byte IEND[] = {73, 69, 78, 68};
|
|
|
|
public final byte[] pngEncode(final int compressionLevel) throws IOException {
|
|
if (this.frame == null) return exportImage(this.getImage(), "png").getBytes();
|
|
final int width = image.getWidth(null);
|
|
final int height = image.getHeight(null);
|
|
|
|
final Deflater scrunch = new Deflater(compressionLevel);
|
|
ByteBuffer outBytes = new ByteBuffer(1024);
|
|
final OutputStream compBytes = new BufferedOutputStream(new DeflaterOutputStream(outBytes, scrunch));
|
|
int i = 0;
|
|
for (int row = 0; row < height; row++) {
|
|
compBytes.write(0);
|
|
// this replaces the whole PixelGrabber process which makes it probably more than 800x faster. See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4835595
|
|
compBytes.write(frame, i, 3 * width);
|
|
i += 3 * width;
|
|
}
|
|
compBytes.close();
|
|
scrunch.finish();
|
|
|
|
// finally write the result of the concurrent calculation into an DeflaterOutputStream to compress the png
|
|
final int nCompressed = outBytes.length();
|
|
final byte[] pngBytes = new byte[nCompressed + 57]; // yes thats the exact size, not too less, not too much. No resizing needed.
|
|
int bytePos = writeBytes(pngBytes, new byte[]{-119, 80, 78, 71, 13, 10, 26, 10}, 0);
|
|
final int startPos = bytePos = writeInt4(pngBytes, 13, bytePos);
|
|
bytePos = writeBytes(pngBytes, IHDR, bytePos);
|
|
bytePos = writeInt4(pngBytes, width, bytePos);
|
|
bytePos = writeInt4(pngBytes, height, bytePos);
|
|
bytePos = writeBytes(pngBytes, new byte[]{8, 2, 0, 0, 0}, bytePos);
|
|
final CRC32 crc = new CRC32();
|
|
crc.reset();
|
|
crc.update(pngBytes, startPos, bytePos - startPos);
|
|
bytePos = writeInt4(pngBytes, (int) crc.getValue(), bytePos);
|
|
crc.reset();
|
|
bytePos = writeInt4(pngBytes, nCompressed, bytePos);
|
|
bytePos = writeBytes(pngBytes, IDAT, bytePos);
|
|
crc.update(IDAT);
|
|
outBytes.copyTo(pngBytes, bytePos);
|
|
outBytes.close();
|
|
outBytes = null;
|
|
crc.update(pngBytes, bytePos, nCompressed);
|
|
bytePos += nCompressed;
|
|
bytePos = writeInt4(pngBytes, (int) crc.getValue(), bytePos);
|
|
bytePos = writeInt4(pngBytes, 0, bytePos);
|
|
bytePos = writeBytes(pngBytes, IEND, bytePos);
|
|
crc.reset();
|
|
crc.update(IEND);
|
|
bytePos = writeInt4(pngBytes, (int) crc.getValue(), bytePos);
|
|
return pngBytes;
|
|
}
|
|
|
|
private final static int writeInt4(final byte[] target, final int n, final int offset) {
|
|
return writeBytes(target, new byte[]{(byte) ((n >> 24) & 0xff), (byte) ((n >> 16) & 0xff), (byte) ((n >> 8) & 0xff), (byte) (n & 0xff)}, offset);
|
|
}
|
|
|
|
private final static int writeBytes(final byte[] target, final byte[] data, final int offset) {
|
|
System.arraycopy(data, 0, target, offset, data.length);
|
|
return offset + data.length;
|
|
}
|
|
|
|
public static void main(final String[] args) {
|
|
// go into headless awt mode
|
|
System.setProperty("java.awt.headless", "true");
|
|
|
|
final RasterPlotter m = new RasterPlotter(200, 300, DrawMode.MODE_SUB, "FFFFFF");
|
|
demoPaint(m);
|
|
final File file = new File("/Users/admin/Desktop/testimage.png");
|
|
try {
|
|
final FileOutputStream fos = new FileOutputStream(file);
|
|
ImageIO.write(m.getImage(), "png", fos);
|
|
fos.close();
|
|
} catch (final IOException e) {}
|
|
ConcurrentLog.shutdown();
|
|
|
|
// open file automatically, works only on Mac OS X
|
|
/*
|
|
Process p = null;
|
|
try {p = Runtime.getRuntime().exec(new String[] {"/usr/bin/osascript", "-e", "open \"" + args[0] + "\""});} catch (final java.io.IOException e) {Log.logException(e);}
|
|
try {p.waitFor();} catch (final InterruptedException e) {Log.logException(e);}
|
|
*/
|
|
}
|
|
|
|
|
|
}
|