You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
249 lines
9.2 KiB
249 lines
9.2 KiB
// kelondroHashtable.java
|
|
// ------------------
|
|
// part of the Kelondro Database
|
|
// (C) by Michael Peter Christen; mc@yacy.net
|
|
// first published on http://www.anomic.de
|
|
// Frankfurt, Germany, 2005
|
|
// last major change: 21.06.2005
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
/*
|
|
|
|
we implement a hashtable based on folded binary trees
|
|
each hight in these binary trees represents one step of rehasing
|
|
the re-hashing is realised by extending the number of relevant bits in the given hash
|
|
We construct the binary tree as follows
|
|
- there exists no root node
|
|
- at height-1 are 2 nodes, and can be accessed by using only the least significant bit of the hash
|
|
- at height-2 are 4 nodes, addresses by (hash & 3) - mapping the 2 lsb of the hash
|
|
- at height-3 are 8 nodes, addresses by (hash & 7)
|
|
- .. and so on.
|
|
The number of nodes N(k) that are needed for a tree of height-k is
|
|
|
|
N(k) = 2**k + N(k-1) = 2**(k + 1) - 2 [where k > 0]
|
|
|
|
We fold this tree by putting all heights of the tree in a sequence
|
|
|
|
Computation of the position (the index) of a node:
|
|
given:
|
|
hash h, with k significant bits (representing a height-k): h|k
|
|
then the position of a node node(h,k) is
|
|
|
|
node(h,k) = N(k - 1) + h|k [where k > 0]
|
|
|
|
We use these nodes to sequentially store a hash h at position node(h, 1), and
|
|
if that fails on node(h, 2), node(h, 3) and so on.
|
|
|
|
This is highly inefficient for the most heights k = 1, ..., (?)
|
|
The 'inefficient-border' depends on the number of elements that we want to store.
|
|
|
|
We therefore introduce an offset o which is the number of bits that are not used
|
|
at the beginning of (re-)hashing. But even if these o re-hasing steps are not done,
|
|
all bits of the hash are relevant.
|
|
Now the number of nodes N(k) that are needed is computed by N(k,o):
|
|
|
|
N(k,o) = N(k) - N(o) = 2**(k + 1) - 2**(o + 1) [where k > o, o >= 0]
|
|
|
|
When o=0 then this is equivalent to N(k).
|
|
|
|
The node-formula must be adopted as well
|
|
|
|
node(h,k,o) = N(k - 1, o) + h|k [where k > o, o >= 0]
|
|
|
|
So if you set an offset o, this leads to a minimum number of nodes
|
|
at level k=o+1: node(0,o + 1,o) = N(o, o) = 0 (position of the first entry)
|
|
|
|
Computatiion of the maxlen 'maxk', the maximum height of the tree for a given
|
|
number of maximum entries 'maxsize' in the hashtable:
|
|
maxk shall be computed in such a way, that N(k,o) <= maxsize, for any o or k
|
|
This means paricualary, that
|
|
|
|
node(h,k,o) < maxsize
|
|
|
|
for h|k we must consider the worst case:
|
|
|
|
h|k (by maxk) = 2**k - 1
|
|
|
|
therefore
|
|
|
|
node(h,maxk,o) < maxsize
|
|
N(maxk - 1, o) + h|maxk < maxsize [where maxk > o, o >= 0]
|
|
2**maxk - 2**(o + 1) + 2**maxk - 1 < maxsize [where maxk > o, o >= 0]
|
|
2**maxk - 2**(o + 1) + 2**maxk < maxsize + 1 [where maxk > o, o >= 0]
|
|
2**maxk + 2**maxk < maxsize + 2**(o + 1) + 1 [where maxk > o, o >= 0]
|
|
2**(maxk+1) < maxsize + 2**(o + 1) + 1 [where maxk > o, o >= 0]
|
|
maxk < log2(maxsize + 2**(o + 1) + 1) [where maxk > o, o >= 0]
|
|
|
|
setting maxk to
|
|
|
|
maxk = log2(maxsize)
|
|
|
|
will make this relation true in any case, even if maxk = log2(maxsize) + 1
|
|
would also be correct in some cases
|
|
|
|
Now we can use the following formula to create the folded binary hash tree:
|
|
|
|
node(h,k,o) = 2**k - 2**(o + 1) + h|k
|
|
|
|
to compute the node index and
|
|
|
|
maxk = log2(maxsize)
|
|
|
|
to compute the upper limit of re-hashing
|
|
|
|
|
|
*/
|
|
|
|
package de.anomic.kelondro;
|
|
|
|
|
|
import java.io.File;
|
|
import java.io.IOException;
|
|
|
|
public class kelondroHashtable {
|
|
|
|
private final kelondroFixedWidthArray hashArray;
|
|
protected int offset;
|
|
protected int maxk;
|
|
private int maxrehash;
|
|
private kelondroRow.Entry dummyRow;
|
|
|
|
private static final byte[] dummyKey = kelondroBase64Order.enhancedCoder.encodeLong(0, 5).getBytes();
|
|
|
|
public kelondroHashtable(final File file, final kelondroRow rowdef, final int offset, final int maxsize, final int maxrehash) throws IOException {
|
|
// this creates a new hashtable
|
|
// the key element is not part of the columns array
|
|
// this is unlike the kelondroTree, where the key is part of a row
|
|
// the offset is a number of bits that is omitted in the folded tree hierarchy
|
|
// a good number for offset is 8
|
|
// the maxsize number is the maximum number of elements in the hashtable
|
|
// this number is needed to omit grow of the table in case of re-hashing
|
|
// the maxsize is re-computed to a virtual folding height and will result in a tablesize
|
|
// less than the given maxsize. The actual maxsize can be retrieved by maxsize()
|
|
final boolean fileExisted = file.exists();
|
|
this.hashArray = new kelondroFixedWidthArray(file, extCol(rowdef), 6);
|
|
if (fileExisted) {
|
|
this.offset = hashArray.geti(0);
|
|
this.maxk = hashArray.geti(1);
|
|
this.maxrehash = hashArray.geti(2);
|
|
} else {
|
|
this.offset = offset;
|
|
this.maxk = kelondroMSetTools.log2a(maxsize); // equal to |log2(maxsize)| + 1
|
|
if (this.maxk >= kelondroMSetTools.log2a(maxsize + power2(offset + 1) + 1) - 1) this.maxk--;
|
|
this.maxrehash = maxrehash;
|
|
dummyRow = this.hashArray.row().newEntry();
|
|
dummyRow.setCol(0, dummyKey);
|
|
//for (int i = 0; i < hashArray.row().columns(); i++)
|
|
hashArray.seti(0, this.offset);
|
|
hashArray.seti(1, this.maxk);
|
|
hashArray.seti(2, this.maxrehash);
|
|
}
|
|
}
|
|
|
|
private kelondroRow extCol(final kelondroRow rowdef) {
|
|
final kelondroColumn[] newCol = new kelondroColumn[rowdef.columns() + 1];
|
|
newCol[0] = new kelondroColumn("Cardinal key-4 {b256}");
|
|
for (int i = 0; i < rowdef.columns(); i++) newCol[i + 1] = rowdef.column(i);
|
|
return new kelondroRow(newCol, rowdef.objectOrder, rowdef.primaryKeyIndex);
|
|
}
|
|
|
|
public static int power2(int x) {
|
|
int p = 1;
|
|
while (x > 0) {p = p << 1; x--;}
|
|
return p;
|
|
}
|
|
|
|
public synchronized byte[][] get(final int key) throws IOException {
|
|
final Object[] search = search(new Hash(key));
|
|
if (search[1] == null) return null;
|
|
final byte[][] row = (byte[][]) search[1];
|
|
final byte[][] result = new byte[row.length - 1][];
|
|
System.arraycopy(row, 1, result, 0, row.length - 1);
|
|
return result;
|
|
}
|
|
|
|
public synchronized kelondroRow.Entry put(final int key, final kelondroRow.Entry rowentry) throws IOException {
|
|
final Hash hash = new Hash(key);
|
|
|
|
// find row
|
|
final Object[] search = search(hash);
|
|
kelondroRow.Entry oldhkrow;
|
|
final int rowNumber = ((Integer) search[0]).intValue();
|
|
if (search[1] == null) {
|
|
oldhkrow = null;
|
|
} else {
|
|
oldhkrow = (kelondroRow.Entry) search[1];
|
|
}
|
|
|
|
// make space
|
|
while (rowNumber >= hashArray.size()) hashArray.set(hashArray.size(), dummyRow);
|
|
|
|
// write row
|
|
final kelondroRow.Entry newhkrow = hashArray.row().newEntry();
|
|
newhkrow.setCol(0, hash.key());
|
|
newhkrow.setCol(1, rowentry.bytes());
|
|
hashArray.set(rowNumber, newhkrow);
|
|
return (oldhkrow == null ? null : hashArray.row().newEntry(oldhkrow.getColBytes(1)));
|
|
}
|
|
|
|
private Object[] search(final Hash hash) throws IOException {
|
|
kelondroRow.Entry hkrow;
|
|
int rowKey;
|
|
int rowNumber;
|
|
do {
|
|
rowNumber = hash.node();
|
|
if (rowNumber >= hashArray.size()) return new Object[]{Integer.valueOf(rowNumber), null};
|
|
hkrow = hashArray.get(rowNumber);
|
|
rowKey = (int) hkrow.getColLong(0);
|
|
if (rowKey == 0) return new Object[]{Integer.valueOf(rowNumber), null};
|
|
hash.rehash();
|
|
} while (rowKey != hash.key());
|
|
return new Object[]{Integer.valueOf(rowNumber), hkrow};
|
|
}
|
|
|
|
|
|
private class Hash {
|
|
int key;
|
|
int hash;
|
|
int depth;
|
|
public Hash(final int key) {
|
|
this.key = key;
|
|
this.hash = key;
|
|
this.depth = offset + 1;
|
|
}
|
|
public int key() {
|
|
return key;
|
|
}
|
|
private int hash() {
|
|
return hash & (power2(depth) - 1); // apply mask
|
|
}
|
|
public int depth() {
|
|
return depth;
|
|
}
|
|
public void rehash() {
|
|
depth++;
|
|
if (depth > maxk) {
|
|
depth = offset + 1;
|
|
hash = (int) ((5 * (long) hash - 7) / 3 + 13);
|
|
}
|
|
}
|
|
public int node() {
|
|
// node(h,k,o) = 2**k - 2**(o + 1) + h|k
|
|
return power2(depth) - power2(offset + 1) + hash();
|
|
}
|
|
}
|
|
}
|