// ReferenceContainerCache.java // (C) 2008 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany // first published 30.03.2008 on http://yacy.net // // This is a part of YaCy, a peer-to-peer based web search engine // // $LastChangedDate: 2009-10-10 01:32:08 +0200 (Sa, 10 Okt 2009) $ // $LastChangedRevision: 6393 $ // $LastChangedBy: orbiter $ // // LICENSE // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA package net.yacy.kelondro.rwi; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.Iterator; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import net.yacy.kelondro.blob.HeapWriter; import net.yacy.kelondro.index.HandleSet; import net.yacy.kelondro.index.Row; import net.yacy.kelondro.index.RowSpaceExceededException; import net.yacy.kelondro.logging.Log; import net.yacy.kelondro.order.Base64Order; import net.yacy.kelondro.order.ByteOrder; import net.yacy.kelondro.order.CloneableIterator; import net.yacy.kelondro.util.ByteArray; import net.yacy.kelondro.util.FileUtils; /** * A ReferenceContainerCache is the ram cache for word indexes or other entity type indexes * The defines the index reference specification and attributes that can be * accessed during a search without using the metadata reference that shall be contained within * the . A ReferenceContainerCache has no active backup in a file, it must be flushed to * a file to save the content of the cache. * * @param */ public final class ReferenceContainerCache extends AbstractIndex implements Index, IndexReader, Iterable> { private final Row payloadrow; protected final ByteOrder termOrder; private final ContainerOrder containerOrder; protected Map> cache; /** * open an existing heap file in undefined mode * after this a initialization should be made to use the heap: * either a read-only or read/write mode initialization * @param payloadrow * @param log */ public ReferenceContainerCache(final ReferenceFactory factory, final Row payloadrow, ByteOrder termOrder) { super(factory); this.payloadrow = payloadrow; this.termOrder = termOrder; this.containerOrder = new ContainerOrder(this.termOrder); this.cache = new ConcurrentHashMap>(); } public Row rowdef() { return this.payloadrow; } public void clear() { if (cache != null) cache.clear(); } public void close() { this.cache = null; } /** * dump the cache to a file. This method can be used in a destructive way * which means that memory can be freed during the dump. This may be important * because the dump is done in such situations when memory gets low. To get more * memory during the dump helps to solve tight memory situations. * @param heapFile * @param writeBuffer * @param destructive - if true then the cache is cleaned during the dump causing to free memory */ public void dump(final File heapFile, int writeBuffer, boolean destructive) { assert this.cache != null; Log.logInfo("indexContainerRAMHeap", "creating rwi heap dump '" + heapFile.getName() + "', " + cache.size() + " rwi's"); if (heapFile.exists()) FileUtils.deletedelete(heapFile); File tmpFile = new File(heapFile.getParentFile(), heapFile.getName() + ".prt"); HeapWriter dump; try { dump = new HeapWriter(tmpFile, heapFile, payloadrow.primaryKeyLength, Base64Order.enhancedCoder, writeBuffer); } catch (IOException e1) { Log.logException(e1); return; } final long startTime = System.currentTimeMillis(); // sort the map ArrayList> cachecopy = sortedClone(); // write wCache long wordcount = 0, urlcount = 0; byte[] wordHash = null, lwh; for (final ReferenceContainer container: cachecopy) { // get entries lwh = wordHash; wordHash = container.getTermHash(); // check consistency: entries must be ordered assert (lwh == null || this.ordering().compare(wordHash, lwh) > 0); // put entries on heap if (container != null && wordHash.length == payloadrow.primaryKeyLength) { //System.out.println("Dump: " + wordHash); try { dump.add(wordHash, container.exportCollection()); } catch (IOException e) { Log.logException(e); } catch (RowSpaceExceededException e) { Log.logException(e); } if (destructive) container.clear(); // this memory is not needed any more urlcount += container.size(); } wordcount++; } try { dump.close(true); Log.logInfo("indexContainerRAMHeap", "finished rwi heap dump: " + wordcount + " words, " + urlcount + " word/URL relations in " + (System.currentTimeMillis() - startTime) + " milliseconds"); } catch (IOException e) { Log.logSevere("indexContainerRAMHeap", "failed rwi heap dump: " + e.getMessage(), e); } finally { dump = null; } } /** * create a clone of the cache content that is sorted using the this.containerOrder * @return the sorted ReferenceContainer[] */ protected ArrayList> sortedClone() { ArrayList> cachecopy = new ArrayList>(cache.size()); synchronized (cache) { for (final Map.Entry> entry: cache.entrySet()) { if (entry.getValue() != null && entry.getValue().getTermHash() != null) cachecopy.add(entry.getValue()); } } Collections.sort(cachecopy, this.containerOrder); return cachecopy; } public int size() { return (this.cache == null) ? 0 : this.cache.size(); } public boolean isEmpty() { if (this.cache == null) return true; return this.cache.isEmpty(); } public int maxReferences() { // iterate to find the max score int max = 0; for (ReferenceContainer container : cache.values()) { if (container.size() > max) max = container.size(); } return max; } /** * return an iterator object that creates top-level-clones of the indexContainers * in the cache, so that manipulations of the iterated objects do not change * objects in the cache. */ public synchronized CloneableIterator> references(final byte[] startWordHash, final boolean rot) { return new heapCacheIterator(startWordHash, rot); } public Iterator> iterator() { return references(null, false); } /** * cache iterator: iterates objects within the heap cache. This can only be used * for write-enabled heaps, read-only heaps do not have a heap cache */ public class heapCacheIterator implements CloneableIterator>, Iterable> { // this class exists, because the wCache cannot be iterated with rotation // and because every indexContainer Object that is iterated must be returned as top-level-clone // so this class simulates wCache.tailMap(startWordHash).values().iterator() // plus the mentioned features private final boolean rot; private final ArrayList> cachecopy; private int p; private byte[] latestTermHash; public heapCacheIterator(byte[] startWordHash, final boolean rot) { this.rot = rot; if (startWordHash != null && startWordHash.length == 0) startWordHash = null; this.cachecopy = sortedClone(); assert this.cachecopy != null; assert termOrder != null; this.p = 0; if (startWordHash != null) { while ( this.p < this.cachecopy.size() && termOrder.compare(this.cachecopy.get(this.p).getTermHash(), startWordHash) < 0 ) this.p++; } this.latestTermHash = null; // The collection's iterator will return the values in the order that their corresponding keys appear in the tree. } public heapCacheIterator clone(final Object secondWordHash) { return new heapCacheIterator((byte[]) secondWordHash, rot); } public boolean hasNext() { if (rot) return this.cachecopy.size() > 0; return this.p < this.cachecopy.size(); } public ReferenceContainer next() { if (this.p < this.cachecopy.size()) { ReferenceContainer c = this.cachecopy.get(this.p++); this.latestTermHash = c.getTermHash(); try { return c.topLevelClone(); } catch (RowSpaceExceededException e) { Log.logException(e); return null; } } // rotation iteration if (!rot) { return null; } if (this.cachecopy.size() == 0) return null; p = 0; ReferenceContainer c = this.cachecopy.get(this.p++); this.latestTermHash = c.getTermHash(); try { return c.topLevelClone(); } catch (RowSpaceExceededException e) { Log.logException(e); return null; } } public void remove() { System.arraycopy(this.cachecopy, this.p, this.cachecopy, this.p - 1, this.cachecopy.size() - p); cache.remove(new ByteArray(this.latestTermHash)); } public Iterator> iterator() { return this; } } /** * test if a given key is in the heap * this works with heaps in write- and read-mode * @param key * @return true, if the key is used in the heap; false otherwise */ public boolean has(final byte[] key) { return this.cache.containsKey(new ByteArray(key)); } /** * get a indexContainer from a heap * @param key * @return the indexContainer if one exist, null otherwise * @throws */ public ReferenceContainer get(final byte[] key, HandleSet urlselection) { ReferenceContainer c = this.cache.get(new ByteArray(key)); if (urlselection == null) return c; if (c == null) return null; // because this is all in RAM, we must clone the entries (flat) try { ReferenceContainer c1 = new ReferenceContainer(factory, c.getTermHash(), c.size()); Iterator e = c.entries(); ReferenceType ee; while (e.hasNext()) { ee = e.next(); if (urlselection.has(ee.metadataHash())) { c1.add(ee); } } return c1; } catch (RowSpaceExceededException e2) { Log.logException(e2); } return null; } /** * return the size of the container with corresponding key * @param key * @return */ public int count(final byte[] key) { ReferenceContainer c = this.cache.get(new ByteArray(key)); if (c == null) return 0; return c.size(); } /** * delete a indexContainer from the heap cache. This can only be used for write-enabled heaps * @param wordHash * @return the indexContainer if the cache contained the container, null otherwise */ public ReferenceContainer delete(final byte[] termHash) { // returns the index that had been deleted assert this.cache != null; return cache.remove(new ByteArray(termHash)); } public boolean remove(final byte[] termHash, final byte[] urlHashBytes) { assert this.cache != null; ByteArray tha = new ByteArray(termHash); synchronized (cache) { final ReferenceContainer c = cache.get(tha); if (c != null && c.delete(urlHashBytes)) { // removal successful if (c.isEmpty()) { delete(termHash); } else { cache.put(tha, c); } return true; } } return false; } public int remove(final byte[] termHash, final HandleSet urlHashes) { assert this.cache != null; if (urlHashes.isEmpty()) return 0; ByteArray tha = new ByteArray(termHash); int count; synchronized (cache) { final ReferenceContainer c = cache.get(tha); if ((c != null) && ((count = c.removeEntries(urlHashes)) > 0)) { // removal successful if (c.isEmpty()) { delete(termHash); } else { cache.put(tha, c); } return count; } } return 0; } public void add(final ReferenceContainer container) throws RowSpaceExceededException { // this puts the entries into the cache assert this.cache != null; if (this.cache == null || container == null || container.isEmpty()) return; // put new words into cache ByteArray tha = new ByteArray(container.getTermHash()); int added = 0; synchronized (cache) { ReferenceContainer entries = cache.get(tha); // null pointer exception? wordhash != null! must be cache==null if (entries == null) { entries = container.topLevelClone(); added = entries.size(); } else { added = entries.putAllRecent(container); } if (added > 0) { cache.put(tha, entries); } entries = null; return; } } public void add(final byte[] termHash, final ReferenceType newEntry) throws RowSpaceExceededException { assert this.cache != null; ByteArray tha = new ByteArray(termHash); // first access the cache without synchronization ReferenceContainer container = cache.remove(tha); if (container == null) container = new ReferenceContainer(factory, termHash, 1); container.put(newEntry); // synchronization: check if the entry is still empty and set new value synchronized (cache) { ReferenceContainer containerNew = cache.put(tha, container); if (containerNew == null) return; if (container == containerNew) { // The containers are the same, so nothing needs to be done return; } // Now merge the smaller container into the lager. // The other way around can become very slow if (container.size() >= containerNew.size()) { container.putAllRecent(containerNew); cache.put(tha, container); } else { containerNew.putAllRecent(container); cache.put(tha, containerNew); } } } public int minMem() { return 0; } public ByteOrder ordering() { return this.termOrder; } public static class ContainerOrder implements Comparator> { private final ByteOrder o; public ContainerOrder(ByteOrder order) { this.o = order; } public int compare(ReferenceContainer arg0, ReferenceContainer arg1) { if (arg0 == arg1) return 0; if (arg0 == null) return -1; if (arg1 == null) return 1; return o.compare(arg0.getTermHash(), arg1.getTermHash()); } } }