// kelondroMSetTools.java
// -------------------------------------
// (C) by Michael Peter Christen; mc@yacy.net
// first published on http://www.anomic.de
// Frankfurt, Germany, 2004
// last major change: 28.12.2004
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package de.anomic.kelondro;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.Map.Entry;
public class kelondroMSetTools {
//public static Comparator fastStringComparator = fastStringComparator(true);
// ------------------------------------------------------------------------------------------------
// helper methods
public static int log2a(int x) {
// this computes 1 + log2
// it is the number of bits in x, not the logarithmus by 2
int l = 0;
while (x > 0) {x = x >>> 1; l++;}
return l;
}
// ------------------------------------------------------------------------------------------------
// join
// We distinguish two principal solutions
// - constructive join (generate new data structure)
// - destructive join (remove non-valid elements from given data structure)
// The algorithm to perform the join can be also of two kind:
// - join by pairwise enumeration
// - join by iterative tests (where we distinguish left-right and right-left tests)
public static TreeMap joinConstructive(final Collection> maps, final boolean concatStrings) {
// this joins all TreeMap(s) contained in maps
// first order entities by their size
final TreeMap> orderMap = new TreeMap>();
TreeMap singleMap;
final Iterator> i = maps.iterator();
int count = 0;
while (i.hasNext()) {
// get next entity:
singleMap = i.next();
// check result
if ((singleMap == null) || (singleMap.size() == 0)) return new TreeMap();
// store result in order of result size
orderMap.put(Long.valueOf(singleMap.size() * 1000 + count), singleMap);
count++;
}
// check if there is any result
if (orderMap.size() == 0) return new TreeMap();
// we now must pairwise build up a conjunction of these maps
Long k = orderMap.firstKey(); // the smallest, which means, the one with the least entries
TreeMap mapA, mapB, joinResult = orderMap.remove(k);
while ((orderMap.size() > 0) && (joinResult.size() > 0)) {
// take the first element of map which is a result and combine it with result
k = orderMap.firstKey(); // the next smallest...
mapA = joinResult;
mapB = orderMap.remove(k);
joinResult = joinConstructiveByTest(mapA, mapB, concatStrings); // TODO: better with enumeration?
// free resources
mapA = null;
mapB = null;
}
// in 'searchResult' is now the combined search result
if (joinResult.size() == 0) return new TreeMap();
return joinResult;
}
public static TreeMap joinConstructive(final TreeMap map1, final TreeMap map2, final boolean concatStrings) {
// comparators must be equal
if ((map1 == null) || (map2 == null)) return null;
if (map1.comparator() != map2.comparator()) return null;
if ((map1.size() == 0) || (map2.size() == 0)) return new TreeMap(map1.comparator());
// decide which method to use
final int high = ((map1.size() > map2.size()) ? map1.size() : map2.size());
final int low = ((map1.size() > map2.size()) ? map2.size() : map1.size());
final int stepsEnum = 10 * (high + low - 1);
final int stepsTest = 12 * log2a(high) * low;
// start most efficient method
if (stepsEnum > stepsTest) {
if (map1.size() > map2.size()) return joinConstructiveByTest(map2, map1, concatStrings);
return joinConstructiveByTest(map1, map2, concatStrings);
}
return joinConstructiveByEnumeration(map1, map2, concatStrings);
}
@SuppressWarnings("unchecked")
private static TreeMap joinConstructiveByTest(final TreeMap small, final TreeMap large, final boolean concatStrings) {
final Iterator> mi = small.entrySet().iterator();
final TreeMap result = new TreeMap(large.comparator());
Map.Entry mentry1;
B mobj2;
while (mi.hasNext()) {
mentry1 = mi.next();
mobj2 = large.get(mentry1.getKey());
if (mobj2 != null) {
if (mentry1.getValue() instanceof String) {
result.put(mentry1.getKey(), (B) ((concatStrings) ? (mentry1.getValue() + (String) mobj2) : mentry1.getValue()));
} else {
result.put(mentry1.getKey(), mentry1.getValue());
}
}
}
return result;
}
@SuppressWarnings("unchecked")
private static TreeMap joinConstructiveByEnumeration(final TreeMap map1, final TreeMap map2, final boolean concatStrings) {
// implement pairwise enumeration
final Comparator super A> comp = map1.comparator();
final Iterator> mi1 = map1.entrySet().iterator();
final Iterator> mi2 = map2.entrySet().iterator();
final TreeMap result = new TreeMap(map1.comparator());
int c;
if ((mi1.hasNext()) && (mi2.hasNext())) {
Map.Entry mentry1 = mi1.next();
Map.Entry mentry2 = mi2.next();
while (true) {
c = comp.compare(mentry1.getKey(), mentry2.getKey());
if (c < 0) {
if (mi1.hasNext()) mentry1 = mi1.next(); else break;
} else if (c > 0) {
if (mi2.hasNext()) mentry2 = mi2.next(); else break;
} else {
if (mentry1.getValue() instanceof String) {
result.put(mentry1.getKey(), (B) ((concatStrings) ? ((String) mentry1.getValue() + (String) mentry2.getValue()) : (String) mentry1.getValue()));
} else {
result.put(mentry1.getKey(), mentry1.getValue());
}
if (mi1.hasNext()) mentry1 = mi1.next(); else break;
if (mi2.hasNext()) mentry2 = mi2.next(); else break;
}
}
}
return result;
}
// now the same for set-set
public static TreeSet joinConstructive(final TreeSet set1, final TreeSet set2) {
// comparators must be equal
if ((set1 == null) || (set2 == null)) return null;
if (set1.comparator() != set2.comparator()) return null;
if ((set1.size() == 0) || (set2.size() == 0)) return new TreeSet(set1.comparator());
// decide which method to use
final int high = ((set1.size() > set2.size()) ? set1.size() : set2.size());
final int low = ((set1.size() > set2.size()) ? set2.size() : set1.size());
final int stepsEnum = 10 * (high + low - 1);
final int stepsTest = 12 * log2a(high) * low;
// start most efficient method
if (stepsEnum > stepsTest) {
if (set1.size() < set2.size()) return joinConstructiveByTest(set1, set2);
return joinConstructiveByTest(set2, set1);
}
return joinConstructiveByEnumeration(set1, set2);
}
private static TreeSet joinConstructiveByTest(final TreeSet small, final TreeSet large) {
final Iterator mi = small.iterator();
final TreeSet result = new TreeSet(small.comparator());
A o;
while (mi.hasNext()) {
o = mi.next();
if (large.contains(o)) result.add(o);
}
return result;
}
private static TreeSet joinConstructiveByEnumeration(final TreeSet set1, final TreeSet set2) {
// implement pairvise enumeration
final Comparator super A> comp = set1.comparator();
final Iterator mi = set1.iterator();
final Iterator si = set2.iterator();
final TreeSet result = new TreeSet(set1.comparator());
int c;
if ((mi.hasNext()) && (si.hasNext())) {
A mobj = mi.next();
A sobj = si.next();
while (true) {
c = comp.compare(mobj, sobj);
if (c < 0) {
if (mi.hasNext()) mobj = mi.next(); else break;
} else if (c > 0) {
if (si.hasNext()) sobj = si.next(); else break;
} else {
result.add(mobj);
if (mi.hasNext()) mobj = mi.next(); else break;
if (si.hasNext()) sobj = si.next(); else break;
}
}
}
return result;
}
// now the same for set-set
public static boolean anymatch(final TreeSet set1, final TreeSet set2) {
// comparators must be equal
if ((set1 == null) || (set2 == null)) return false;
if (set1.comparator() != set2.comparator()) return false;
if ((set1.size() == 0) || (set2.size() == 0)) return false;
// decide which method to use
final int high = ((set1.size() > set2.size()) ? set1.size() : set2.size());
final int low = ((set1.size() > set2.size()) ? set2.size() : set1.size());
final int stepsEnum = 10 * (high + low - 1);
final int stepsTest = 12 * log2a(high) * low;
// start most efficient method
if (stepsEnum > stepsTest) {
if (set1.size() < set2.size()) return anymatchByTest(set1, set2);
return anymatchByTest(set2, set1);
}
return anymatchByEnumeration(set1, set2);
}
private static boolean anymatchByTest(final TreeSet small, final TreeSet large) {
final Iterator mi = small.iterator();
A o;
while (mi.hasNext()) {
o = mi.next();
if (large.contains(o)) return true;
}
return false;
}
private static boolean anymatchByEnumeration(final TreeSet set1, final TreeSet set2) {
// implement pairvise enumeration
final Comparator super A> comp = set1.comparator();
final Iterator mi = set1.iterator();
final Iterator si = set2.iterator();
int c;
if ((mi.hasNext()) && (si.hasNext())) {
A mobj = mi.next();
A sobj = si.next();
while (true) {
c = comp.compare(mobj, sobj);
if (c < 0) {
if (mi.hasNext()) mobj = mi.next(); else break;
} else if (c > 0) {
if (si.hasNext()) sobj = si.next(); else break;
} else {
return true;
}
}
}
return false;
}
// ------------------------------------------------------------------------------------------------
// exclude
public static TreeMap excludeConstructive(final TreeMap map, final TreeSet set) {
// comparators must be equal
if (map == null) return null;
if (set == null) return map;
if ((map.size() == 0) || (set.size() == 0)) return map;
if (map.comparator() != set.comparator()) return excludeConstructiveByTestMapInSet(map, set);
return excludeConstructiveByTestMapInSet(map, set);
// return excludeConstructiveByEnumeration(map, set);
}
private static TreeMap excludeConstructiveByTestMapInSet(final TreeMap map, final TreeSet set) {
final TreeMap result = new TreeMap(map.comparator());
A o;
for (Entry entry: map.entrySet()) {
o = entry.getKey();
if (!(set.contains(o))) result.put(o, entry.getValue());
}
return result;
}
public static void excludeDestructive(final TreeMap map, final TreeSet set) {
// comparators must be equal
if (map == null) return;
if (set == null) return;
if (map.comparator() != set.comparator()) return;
if ((map.size() == 0) || (set.size() == 0)) return;
if (map.size() < set.size())
excludeDestructiveByTestMapInSet(map, set);
else
excludeDestructiveByTestSetInMap(map, set);
}
private static void excludeDestructiveByTestMapInSet(final TreeMap map, final TreeSet set) {
final Iterator mi = map.keySet().iterator();
while (mi.hasNext()) if (set.contains(mi.next())) mi.remove();
}
private static void excludeDestructiveByTestSetInMap(final TreeMap map, final TreeSet set) {
final Iterator si = set.iterator();
while (si.hasNext()) map.remove(si.next());
}
// and the same again with set-set
public static void excludeDestructive(final TreeSet set1, final TreeSet set2) {
// comparators must be equal
if (set1 == null) return;
if (set2 == null) return;
if (set1.comparator() != set2.comparator()) return;
if ((set1.size() == 0) || (set2.size() == 0)) return;
if (set1.size() < set2.size())
excludeDestructiveByTestSmallInLarge(set1, set2);
else
excludeDestructiveByTestLargeInSmall(set1, set2);
}
private static void excludeDestructiveByTestSmallInLarge(final TreeSet small, final TreeSet large) {
final Iterator mi = small.iterator();
while (mi.hasNext()) if (large.contains(mi.next())) mi.remove();
}
private static void excludeDestructiveByTestLargeInSmall(final TreeSet large, final TreeSet small) {
final Iterator si = small.iterator();
while (si.hasNext()) large.remove(si.next());
}
// ------------------------------------------------------------------------------------------------
public static TreeMap loadMap(final String filename, final String sep) {
final TreeMap map = new TreeMap();
BufferedReader br = null;
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(filename)));
String line;
int pos;
while ((line = br.readLine()) != null) {
line = line.trim();
if ((line.length() > 0) && (!(line.startsWith("#"))) && ((pos = line.indexOf(sep)) > 0))
map.put(line.substring(0, pos).trim().toLowerCase(), line.substring(pos + sep.length()).trim());
}
} catch (final IOException e) {
} finally {
if (br != null) try { br.close(); } catch (final Exception e) {}
}
return map;
}
public static TreeMap> loadMapMultiValsPerKey(final String filename, final String sep) {
final TreeMap> map = new TreeMap>();
BufferedReader br = null;
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(filename)));
String line, key, value;
int pos;
while ((line = br.readLine()) != null) {
line = line.trim();
if ((line.length() > 0) && (!(line.startsWith("#"))) && ((pos = line.indexOf(sep)) > 0)) {
key = line.substring(0, pos).trim().toLowerCase();
value = line.substring(pos + sep.length()).trim();
if (!map.containsKey(key)) map.put(key, new ArrayList());
map.get(key).add(value);
}
}
} catch (final IOException e) {
} finally {
if (br != null) try { br.close(); } catch (final Exception e) {}
}
return map;
}
public static TreeSet loadList(final File file, final Comparator c) {
final TreeSet list = new TreeSet(c);
if (!(file.exists())) return list;
BufferedReader br = null;
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(file)));
String line;
while ((line = br.readLine()) != null) {
line = line.trim();
if ((line.length() > 0) && (!(line.startsWith("#")))) list.add(line.trim().toLowerCase());
}
br.close();
} catch (final IOException e) {
} finally {
if (br != null) try{br.close();}catch(final Exception e){}
}
return list;
}
public static String setToString(final Set set, final char separator) {
final Iterator i = set.iterator();
final StringBuffer sb = new StringBuffer(set.size() * 7);
if (i.hasNext()) sb.append(i.next());
while (i.hasNext()) {
sb.append(separator).append(i.next());
}
return new String(sb);
}
// ------------------------------------------------------------------------------------------------
public static void main(final String[] args) {
final TreeMap m = new TreeMap();
final TreeMap s = new TreeMap();
m.put("a", "a");
m.put("x", "x");
m.put("f", "f");
m.put("h", "h");
m.put("w", "w");
m.put("7", "7");
m.put("t", "t");
m.put("k", "k");
m.put("y", "y");
m.put("z", "z");
s.put("a", "a");
s.put("b", "b");
s.put("c", "c");
s.put("k", "k");
s.put("l", "l");
s.put("m", "m");
s.put("n", "n");
s.put("o", "o");
s.put("p", "p");
s.put("q", "q");
s.put("r", "r");
s.put("s", "s");
s.put("t", "t");
s.put("x", "x");
System.out.println("Compare " + m.toString() + " with " + s.toString());
System.out.println("Join=" + joinConstructiveByEnumeration(m, s, true));
System.out.println("Join=" + joinConstructiveByTest(m, s, true));
System.out.println("Join=" + joinConstructiveByTest(m, s, true));
System.out.println("Join=" + joinConstructive(m, s, true));
//System.out.println("Exclude=" + excludeConstructiveByTestMapInSet(m, s.keySet()));
/*
for (int low = 0; low < 10; low++)
for (int high = 0; high < 100; high=high + 10) {
int stepsEnum = 10 * high;
int stepsTest = 12 * log2(high) * low;
System.out.println("low=" + low + ", high=" + high + ", stepsEnum=" + stepsEnum + ", stepsTest=" + stepsTest + "; best method is " + ((stepsEnum < stepsTest) ? "joinByEnumeration" : "joinByTest"));
}
*/
}
}