/**
* ProbabilisticClassifier
* Copyright 2015 by Michael Peter Christen; mc@yacy.net, Frankfurt a. M., Germany
* first published 06.08.2015 on http://yacy.net
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program in the file lgpl21.txt
* If not, see .
*/
package net.yacy.document;
import java.io.File;
import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import net.yacy.cora.bayes.BayesClassifier;
import net.yacy.cora.bayes.Classification;
import net.yacy.cora.util.ConcurrentLog;
public class ProbabilisticClassifier {
public final static String NONE_CATEGORY_NAME = "NONE";
public final static Category NONE_CATEGORY = new Category(NONE_CATEGORY_NAME);
public static class Category {
String category_name;
public Category(String category_name) {
this.category_name = category_name;
}
public String getName() {
return this.category_name;
}
}
public static class Context {
private String context_name;
private BayesClassifier bayes;
public Context(String context_name, Map categoryExampleLinesFiles, File negativeExampleLines) throws IOException {
this.context_name = context_name;
int requiredSize = 0;
Charset charset = Charset.forName("UTF-8");
Map> categoryBuffer = new HashMap<>();
for (Map.Entry category: categoryExampleLinesFiles.entrySet()) {
List list = Files.readAllLines(category.getValue().toPath(), charset);
categoryBuffer.put(category.getKey(), list);
requiredSize += list.size();
}
List list = Files.readAllLines(negativeExampleLines.toPath(), charset);
categoryBuffer.put(NONE_CATEGORY_NAME, Files.readAllLines(negativeExampleLines.toPath(), charset));
requiredSize += list.size();
this.bayes = new BayesClassifier<>();
this.bayes.setMemoryCapacity(requiredSize);
for (Map.Entry> category: categoryBuffer.entrySet()) {
Category c = new Category(category.getKey());
for (String line: category.getValue()) {
List tokens = normalize(line);
bayes.learn(c, tokens);
}
}
bayes.learn(NONE_CATEGORY, categoryBuffer.get(NONE_CATEGORY_NAME));
}
private List normalize(String phrase) {
String cleanphrase = phrase.toLowerCase().replaceAll("\\W", " ");
String[] rawtokens = cleanphrase.split("\\s");
List tokens = new ArrayList<>();
for (String token: rawtokens) if (token.length() > 2) tokens.add(token);
return tokens;
}
public String getName() {
return this.context_name;
}
public Classification classify(String phrase) {
List words = normalize(phrase);
return this.bayes.classify(words);
}
}
private static Map contexts;
public static Set getContextNames() {
return contexts.keySet();
}
public static Context getContext(String contextName) {
return contexts.get(contextName);
}
/**
* create a new classifier set.
* @param path_to_context_directory directory containing contexts wich are directories containing .txt files. One of them must be named 'negative.txt'
*/
public static void initialize(File path_to_context_directory) {
contexts = new HashMap<>();
String[] context_candidates = path_to_context_directory.list();
for (String context_candidate: context_candidates) {
File ccf = new File(path_to_context_directory, context_candidate);
if (!ccf.isDirectory()) continue;
String[] category_candidates = ccf.list();
Map categoryExampleLinesFiles = new HashMap<>();
File negativeExampleLines = null;
for (String category_candidate: category_candidates) {
if (!category_candidate.endsWith(".txt")) continue;
File catcf = new File(ccf, category_candidate);
if (category_candidate.startsWith("negative")) {
negativeExampleLines = catcf;
} else {
categoryExampleLinesFiles.put(category_candidate.substring(0, category_candidate.length() - 4), catcf);
}
}
if (negativeExampleLines != null && categoryExampleLinesFiles.size() > 0) {
try {
Context context = new Context(context_candidate, categoryExampleLinesFiles, negativeExampleLines);
contexts.put(context_candidate, context);
} catch (IOException e) {
ConcurrentLog.logException(e);
}
}
}
}
/**
* compute the classification of a given text. The result is a map with most probable categorizations for each context.
* @param text the text to be classified
* @return a map where the key is the navigator name (the bayes context) and the value is the most probable attribute name (the bayes category)
*/
public static Map getClassification(String text) {
Map c = new HashMap<>();
for (Context context: contexts.values()) {
Classification classification = context.classify(text);
String contextname = context.getName();
Category category = classification.getCategory();
String categoryname = category.getName();
c.put(contextname, categoryname);
}
return c;
}
}