// kelondroHashtable.java // ------------------ // part of the Kelondro Database // (C) by Michael Peter Christen; mc@anomic.de // first published on http://www.anomic.de // Frankfurt, Germany, 2005 // last major change: 21.06.2005 // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // Using this software in any meaning (reading, learning, copying, compiling, // running) means that you agree that the Author(s) is (are) not responsible // for cost, loss of data or any harm that may be caused directly or indirectly // by usage of this softare or this documentation. The usage of this software // is on your own risk. The installation and usage (starting/running) of this // software may allow other people or application to access your computer and // any attached devices and is highly dependent on the configuration of the // software which must be done by the user of the software; the author(s) is // (are) also not responsible for proper configuration and usage of the // software, even if provoked by documentation provided together with // the software. // // Any changes to this file according to the GPL as documented in the file // gpl.txt aside this file in the shipment you received can be done to the // lines that follows this copyright notice here, but changes must not be // done inside the copyright notive above. A re-distribution must contain // the intact and unchanged copyright notice. // Contributions and changes to the program code must be marked as such. /* we implement a hashtable based on folded binary trees each hight in these binary trees represents one step of rehasing the re-hashing is realised by extending the number of relevant bits in the given hash We construct the binary tree as follows - there exists no root node - at height-1 are 2 nodes, and can be accessed by using only the least significant bit of the hash - at height-2 are 4 nodes, addresses by (hash & 3) - mapping the 2 lsb of the hash - at height-3 are 8 nodes, addresses by (hash & 7) - .. and so on. The number of nodes N(k) that are needed for a tree of height-k is N(k) = 2**k + N(k-1) = 2**(k + 1) - 2 [where k > 0] We fold this tree by putting all heights of the tree in a sequence Computation of the position (the index) of a node: given: hash h, with k significant bits (representing a height-k): h|k then the position of a node node(h,k) is node(h,k) = N(k - 1) + h|k [where k > 0] We use these nodes to sequentially store a hash h at position node(h, 1), and if that fails on node(h, 2), node(h, 3) and so on. This is highly inefficient for the most heights k = 1, ..., (?) The 'inefficient-border' depends on the number of elements that we want to store. We therefore introduce an offset o which is the number of bits that are not used at the beginning of (re-)hashing. But even if these o re-hasing steps are not done, all bits of the hash are relevant. Now the number of nodes N(k) that are needed is computed by N(k,o): N(k,o) = N(k) - N(o) = 2**(k + 1) - 2**(o + 1) [where k > o, o >= 0] When o=0 then this is equivalent to N(k). The node-formula must be adopted as well node(h,k,o) = N(k - 1, o) + h|k [where k > o, o >= 0] So if you set an offset o, this leads to a minimum number of nodes at level k=o+1: node(0,o + 1,o) = N(o, o) = 0 (position of the first entry) Computatiion of the maxlen 'maxk', the maximum height of the tree for a given number of maximum entries 'maxsize' in the hashtable: maxk shall be computed in such a way, that N(k,o) <= maxsize, for any o or k This means paricualary, that node(h,k,o) < maxsize for h|k we must consider the worst case: h|k (by maxk) = 2**k - 1 therefore node(h,maxk,o) < maxsize N(maxk - 1, o) + h|maxk < maxsize [where maxk > o, o >= 0] 2**maxk - 2**(o + 1) + 2**maxk - 1 < maxsize [where maxk > o, o >= 0] 2**maxk - 2**(o + 1) + 2**maxk < maxsize + 1 [where maxk > o, o >= 0] 2**maxk + 2**maxk < maxsize + 2**(o + 1) + 1 [where maxk > o, o >= 0] 2**(maxk+1) < maxsize + 2**(o + 1) + 1 [where maxk > o, o >= 0] maxk < log2(maxsize + 2**(o + 1) + 1) [where maxk > o, o >= 0] setting maxk to maxk = log2(maxsize) will make this relation true in any case, even if maxk = log2(maxsize) + 1 would also be correct in some cases Now we can use the following formula to create the folded binary hash tree: node(h,k,o) = 2**k - 2**(o + 1) + h|k to compute the node index and maxk = log2(maxsize) to compute the upper limit of re-hashing */ package de.anomic.kelondro; import java.io.File; import java.io.IOException; public class kelondroHashtable { private kelondroArray hashArray; private int offset; private int maxk; private int maxrehash; private byte[][] dummyRow; private static final byte[] dummyKey = kelondroBase64Order.enhancedCoder.encodeLong(0, 5).getBytes(); public kelondroHashtable(File file, int[] columns, int offset, int maxsize, int maxrehash, boolean exitOnFail) { // this creates a new hashtable // the key element is not part of the columns array // this is unlike the kelondroTree, where the key is part of a row // the offset is a number of bits that is omitted in the folded tree hierarchy // a good number for offset is 8 // the maxsize number is the maximum number of elements in the hashtable // this number is needed to omit grow of the table in case of re-hashing // the maxsize is re-computed to a virtual folding height and will result in a tablesize // less than the given maxsize. The actual maxsize can be retrieved by maxsize() this.hashArray = new kelondroArray(file, extCol(columns), 6, exitOnFail); this.offset = offset; this.maxk = kelondroMSetTools.log2a(maxsize); // equal to |log2(maxsize)| + 1 if (this.maxk >= kelondroMSetTools.log2a(maxsize + power2(offset + 1) + 1) - 1) this.maxk--; this.maxrehash = maxrehash; dummyRow = new byte[hashArray.columns()][]; dummyRow[0] = dummyKey; for (int i = 0; i < hashArray.columns(); i++) try { hashArray.seti(0, this.offset); hashArray.seti(1, this.maxk); hashArray.seti(2, this.maxrehash); } catch (IOException e) { hashArray.logFailure("cannot set properties / " + e.getMessage()); if (exitOnFail) System.exit(-1); throw new RuntimeException("cannot set properties / " + e.getMessage()); } } public kelondroHashtable(File file) throws IOException{ // this opens a file with an existing hashtable this.hashArray = new kelondroArray(file); this.offset = hashArray.geti(0); this.maxk = hashArray.geti(1); this.maxrehash = hashArray.geti(2); } private int[] extCol(int[] columns) { int[] newCol = new int[columns.length + 1]; newCol[0] = 4; System.arraycopy(columns, 0, newCol, 1, columns.length); return newCol; } public static int power2(int x) { int p = 1; while (x > 0) {p = p << 1; x--;} return p; } public synchronized byte[][] get(int key) throws IOException { Object[] search = search(new Hash(key)); if (search[1] == null) return null; byte[][] row = (byte[][]) search[1]; byte[][] result = new byte[row.length - 1][]; System.arraycopy(row, 1, result, 0, row.length - 1); return result; } public synchronized byte[][] put(int key, byte[][] row) throws IOException { Hash hash = new Hash(key); // find row Object[] search = search(hash); byte[][] oldrow; int rowNumber = ((Integer) search[0]).intValue(); if (search[1] == null) { oldrow = null; } else { oldrow = (byte[][]) search[1]; } // make space while (rowNumber >= hashArray.size()) hashArray.set(hashArray.size(), dummyRow); // write row byte[][] newrow = new byte[hashArray.columns()][]; newrow[0] = kelondroBase64Order.enhancedCoder.encodeLong(hash.key(), 5).getBytes(); System.arraycopy(row, 0, newrow, 1, row.length); hashArray.set(rowNumber, row); return oldrow; } private Object[] search(Hash hash) throws IOException { byte[][] row; int rowKey; int rowNumber; do { rowNumber = hash.node(); if (rowNumber >= hashArray.size()) return new Object[]{new Integer(rowNumber), null}; row = hashArray.get(rowNumber); rowKey = (int) kelondroBase64Order.enhancedCoder.decodeLong(new String(row[0], "UTF-8")); if (rowKey == 0) return new Object[]{new Integer(rowNumber), null}; hash.rehash(); } while (rowKey != hash.key()); return new Object[]{new Integer(rowNumber), row}; } private class Hash { int key; int hash; int depth; public Hash(int key) { this.key = key; this.hash = key; this.depth = offset + 1; } public int key() { return key; } private int hash() { return hash & (power2(depth) - 1); // apply mask } public int depth() { return depth; } public void rehash() { depth++; if (depth > maxk) { depth = offset + 1; hash = (int) ((5 * (long) hash - 7) / 3 + 13); } } public int node() { // node(h,k,o) = 2**k - 2**(o + 1) + h|k return power2(depth) - power2(offset + 1) + hash(); } } }