You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bitcoin/test/functional/rpc_rawtransaction.py

591 lines
32 KiB

#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the rawtransaction RPCs.
Test the following RPCs:
- getrawtransaction
- createrawtransaction
- signrawtransactionwithwallet
- sendrawtransaction
- decoderawtransaction
"""
from collections import OrderedDict
from decimal import Decimal
from itertools import product
from test_framework.messages import (
MAX_BIP125_RBF_SEQUENCE,
COIN,
CTransaction,
CTxOut,
tx_from_hex,
)
from test_framework.script import (
CScript,
OP_FALSE,
OP_INVALIDOPCODE,
OP_RETURN,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_raises_rpc_error,
)
from test_framework.wallet import (
getnewdestination,
MiniWallet,
)
TXID = "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000"
class multidict(dict):
"""Dictionary that allows duplicate keys.
Constructed with a list of (key, value) tuples. When dumped by the json module,
will output invalid json with repeated keys, eg:
>>> json.dumps(multidict([(1,2),(1,2)])
'{"1": 2, "1": 2}'
Used to test calls to rpc methods with repeated keys in the json object."""
def __init__(self, x):
dict.__init__(self, x)
self.x = x
def items(self):
return self.x
class RawTransactionsTest(BitcoinTestFramework):
def add_options(self, parser):
self.add_wallet_options(parser, descriptors=False)
def set_test_params(self):
self.num_nodes = 3
self.extra_args = [
["-txindex"],
["-txindex"],
[],
]
# whitelist all peers to speed up tx relay / mempool sync
for args in self.extra_args:
args.append("-whitelist=noban@127.0.0.1")
self.supports_cli = False
def setup_network(self):
super().setup_network()
self.connect_nodes(0, 2)
def run_test(self):
self.wallet = MiniWallet(self.nodes[0])
self.getrawtransaction_tests()
self.getrawtransaction_verbosity_tests()
self.createrawtransaction_tests()
self.sendrawtransaction_tests()
self.sendrawtransaction_testmempoolaccept_tests()
self.decoderawtransaction_tests()
self.transaction_version_number_tests()
if self.is_specified_wallet_compiled() and not self.options.descriptors:
self.import_deterministic_coinbase_privkeys()
self.raw_multisig_transaction_legacy_tests()
def getrawtransaction_tests(self):
tx = self.wallet.send_self_transfer(from_node=self.nodes[0])
self.generate(self.nodes[0], 1)
txId = tx['txid']
err_msg = (
"No such mempool transaction. Use -txindex or provide a block hash to enable"
" blockchain transaction queries. Use gettransaction for wallet transactions."
)
for n in [0, 2]:
self.log.info(f"Test getrawtransaction {'with' if n == 0 else 'without'} -txindex")
if n == 0:
# With -txindex.
# 1. valid parameters - only supply txid
assert_equal(self.nodes[n].getrawtransaction(txId), tx['hex'])
# 2. valid parameters - supply txid and 0 for non-verbose
assert_equal(self.nodes[n].getrawtransaction(txId, 0), tx['hex'])
# 3. valid parameters - supply txid and False for non-verbose
assert_equal(self.nodes[n].getrawtransaction(txId, False), tx['hex'])
# 4. valid parameters - supply txid and 1 for verbose.
# We only check the "hex" field of the output so we don't need to update this test every time the output format changes.
assert_equal(self.nodes[n].getrawtransaction(txId, 1)["hex"], tx['hex'])
assert_equal(self.nodes[n].getrawtransaction(txId, 2)["hex"], tx['hex'])
# 5. valid parameters - supply txid and True for non-verbose
assert_equal(self.nodes[n].getrawtransaction(txId, True)["hex"], tx['hex'])
else:
# Without -txindex, expect to raise.
for verbose in [None, 0, False, 1, True]:
assert_raises_rpc_error(-5, err_msg, self.nodes[n].getrawtransaction, txId, verbose)
# 6. invalid parameters - supply txid and invalid boolean values (strings) for verbose
for value in ["True", "False"]:
assert_raises_rpc_error(-3, "not of expected type number", self.nodes[n].getrawtransaction, txid=txId, verbose=value)
assert_raises_rpc_error(-3, "not of expected type number", self.nodes[n].getrawtransaction, txid=txId, verbosity=value)
# 7. invalid parameters - supply txid and empty array
assert_raises_rpc_error(-3, "not of expected type number", self.nodes[n].getrawtransaction, txId, [])
# 8. invalid parameters - supply txid and empty dict
assert_raises_rpc_error(-3, "not of expected type number", self.nodes[n].getrawtransaction, txId, {})
# Make a tx by sending, then generate 2 blocks; block1 has the tx in it
tx = self.wallet.send_self_transfer(from_node=self.nodes[2])['txid']
block1, block2 = self.generate(self.nodes[2], 2)
for n in [0, 2]:
self.log.info(f"Test getrawtransaction {'with' if n == 0 else 'without'} -txindex, with blockhash")
# We should be able to get the raw transaction by providing the correct block
gottx = self.nodes[n].getrawtransaction(txid=tx, verbose=True, blockhash=block1)
assert_equal(gottx['txid'], tx)
assert_equal(gottx['in_active_chain'], True)
if n == 0:
self.log.info("Test getrawtransaction with -txindex, without blockhash: 'in_active_chain' should be absent")
for v in [1,2]:
gottx = self.nodes[n].getrawtransaction(txid=tx, verbosity=v)
assert_equal(gottx['txid'], tx)
assert 'in_active_chain' not in gottx
else:
self.log.info("Test getrawtransaction without -txindex, without blockhash: expect the call to raise")
assert_raises_rpc_error(-5, err_msg, self.nodes[n].getrawtransaction, txid=tx, verbose=True)
# We should not get the tx if we provide an unrelated block
assert_raises_rpc_error(-5, "No such transaction found", self.nodes[n].getrawtransaction, txid=tx, blockhash=block2)
# An invalid block hash should raise the correct errors
assert_raises_rpc_error(-3, "JSON value of type bool is not of expected type string", self.nodes[n].getrawtransaction, txid=tx, blockhash=True)
assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[n].getrawtransaction, txid=tx, blockhash="foobar")
assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[n].getrawtransaction, txid=tx, blockhash="abcd1234")
foo = "ZZZ0000000000000000000000000000000000000000000000000000000000000"
assert_raises_rpc_error(-8, f"parameter 3 must be hexadecimal string (not '{foo}')", self.nodes[n].getrawtransaction, txid=tx, blockhash=foo)
bar = "0000000000000000000000000000000000000000000000000000000000000000"
assert_raises_rpc_error(-5, "Block hash not found", self.nodes[n].getrawtransaction, txid=tx, blockhash=bar)
# Undo the blocks and verify that "in_active_chain" is false.
self.nodes[n].invalidateblock(block1)
gottx = self.nodes[n].getrawtransaction(txid=tx, verbose=True, blockhash=block1)
assert_equal(gottx['in_active_chain'], False)
self.nodes[n].reconsiderblock(block1)
assert_equal(self.nodes[n].getbestblockhash(), block2)
self.log.info("Test getrawtransaction on genesis block coinbase returns an error")
block = self.nodes[0].getblock(self.nodes[0].getblockhash(0))
assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot'])
def getrawtransaction_verbosity_tests(self):
tx = self.wallet.send_self_transfer(from_node=self.nodes[1])['txid']
[block1] = self.generate(self.nodes[1], 1)
fields = [
'blockhash',
'blocktime',
'confirmations',
'hash',
'hex',
'in_active_chain',
'locktime',
'size',
'time',
'txid',
'vin',
'vout',
'vsize',
'weight',
]
prevout_fields = [
'generated',
'height',
'value',
'scriptPubKey',
]
script_pub_key_fields = [
'address',
'asm',
'hex',
'type',
]
# node 0 & 2 with verbosity 1 & 2
for n, v in product([0, 2], [1, 2]):
self.log.info(f"Test getrawtransaction_verbosity {v} {'with' if n == 0 else 'without'} -txindex, with blockhash")
gottx = self.nodes[n].getrawtransaction(txid=tx, verbosity=v, blockhash=block1)
missing_fields = set(fields).difference(gottx.keys())
if missing_fields:
raise AssertionError(f"fields {', '.join(missing_fields)} are not in transaction")
assert len(gottx['vin']) > 0
if v == 1:
assert 'fee' not in gottx
assert 'prevout' not in gottx['vin'][0]
if v == 2:
assert isinstance(gottx['fee'], Decimal)
assert 'prevout' in gottx['vin'][0]
prevout = gottx['vin'][0]['prevout']
script_pub_key = prevout['scriptPubKey']
missing_fields = set(prevout_fields).difference(prevout.keys())
if missing_fields:
raise AssertionError(f"fields {', '.join(missing_fields)} are not in transaction")
missing_fields = set(script_pub_key_fields).difference(script_pub_key.keys())
if missing_fields:
raise AssertionError(f"fields {', '.join(missing_fields)} are not in transaction")
# check verbosity 2 without blockhash but with txindex
assert 'fee' in self.nodes[0].getrawtransaction(txid=tx, verbosity=2)
# check that coinbase has no fee or does not throw any errors for verbosity 2
coin_base = self.nodes[1].getblock(block1)['tx'][0]
gottx = self.nodes[1].getrawtransaction(txid=coin_base, verbosity=2, blockhash=block1)
assert 'fee' not in gottx
def createrawtransaction_tests(self):
self.log.info("Test createrawtransaction")
# Test `createrawtransaction` required parameters
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction)
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [])
# Test `createrawtransaction` invalid extra parameters
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo')
# Test `createrawtransaction` invalid `inputs`
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type array", self.nodes[0].createrawtransaction, 'foo', {})
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type object", self.nodes[0].createrawtransaction, ['foo'], {})
assert_raises_rpc_error(-3, "JSON value of type null is not of expected type string", self.nodes[0].createrawtransaction, [{}], {})
assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {})
txid = "ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844"
assert_raises_rpc_error(-8, f"txid must be hexadecimal string (not '{txid}')", self.nodes[0].createrawtransaction, [{'txid': txid}], {})
assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': TXID}], {})
assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': 'foo'}], {})
assert_raises_rpc_error(-8, "Invalid parameter, vout cannot be negative", self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': -1}], {})
# sequence number out of range
for invalid_seq in [-1, 4294967296]:
inputs = [{'txid': TXID, 'vout': 1, 'sequence': invalid_seq}]
address = getnewdestination()[2]
outputs = {address: 1}
assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range',
self.nodes[0].createrawtransaction, inputs, outputs)
# with valid sequence number
for valid_seq in [1000, 4294967294]:
inputs = [{'txid': TXID, 'vout': 1, 'sequence': valid_seq}]
address = getnewdestination()[2]
outputs = {address: 1}
rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
decrawtx = self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['vin'][0]['sequence'], valid_seq)
# Test `createrawtransaction` invalid `outputs`
address = getnewdestination()[2]
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type array", self.nodes[0].createrawtransaction, [], 'foo')
self.nodes[0].createrawtransaction(inputs=[], outputs={}) # Should not throw for backwards compatibility
self.nodes[0].createrawtransaction(inputs=[], outputs=[])
assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'})
assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0})
assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'})
assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1})
assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)]))
assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}])
assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}])
assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")]))
assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}])
assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']])
# Test `createrawtransaction` mismatch between sequence number(s) and `replaceable` option
assert_raises_rpc_error(-8, "Invalid parameter combination: Sequence number(s) contradict replaceable option",
self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': 0, 'sequence': MAX_BIP125_RBF_SEQUENCE+1}], {}, 0, True)
# Test `createrawtransaction` invalid `locktime`
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo')
assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1)
assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296)
# Test `createrawtransaction` invalid `replaceable`
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo')
# Test that createrawtransaction accepts an array and object as outputs
# One output
tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs={address: 99}))
assert_equal(len(tx.vout), 1)
assert_equal(
tx.serialize().hex(),
self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}]),
)
# Two outputs
address2 = getnewdestination()[2]
tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)])))
assert_equal(len(tx.vout), 2)
assert_equal(
tx.serialize().hex(),
self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]),
)
# Multiple mixed outputs
tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')])))
assert_equal(len(tx.vout), 3)
assert_equal(
tx.serialize().hex(),
self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}, {address2: 99}, {'data': '99'}]),
)
def sendrawtransaction_tests(self):
self.log.info("Test sendrawtransaction with missing input")
inputs = [{'txid': TXID, 'vout': 1}] # won't exist
address = getnewdestination()[2]
outputs = {address: 4.998}
rawtx = self.nodes[2].createrawtransaction(inputs, outputs)
assert_raises_rpc_error(-25, "bad-txns-inputs-missingorspent", self.nodes[2].sendrawtransaction, rawtx)
self.log.info("Test sendrawtransaction exceeding, falling short of, and equaling maxburnamount")
max_burn_exceeded = "Unspendable output exceeds maximum configured by user (maxburnamount)"
# Test that spendable transaction with default maxburnamount (0) gets sent
tx = self.wallet.create_self_transfer()['tx']
tx_hex = tx.serialize().hex()
self.nodes[2].sendrawtransaction(hexstring=tx_hex)
# Test that datacarrier transaction with default maxburnamount (0) does not get sent
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.001
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_RETURN] + [OP_FALSE] * 30))]
tx_hex = tx.serialize().hex()
assert_raises_rpc_error(-25, max_burn_exceeded, self.nodes[2].sendrawtransaction, tx_hex)
# Test that oversized script gets rejected by sendrawtransaction
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.001
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_FALSE] * 10001))]
tx_hex = tx.serialize().hex()
assert_raises_rpc_error(-25, max_burn_exceeded, self.nodes[2].sendrawtransaction, tx_hex)
# Test that script containing invalid opcode gets rejected by sendrawtransaction
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.01
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_INVALIDOPCODE]))]
tx_hex = tx.serialize().hex()
assert_raises_rpc_error(-25, max_burn_exceeded, self.nodes[2].sendrawtransaction, tx_hex)
# Test a transaction where our burn exceeds maxburnamount
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.001
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_RETURN] + [OP_FALSE] * 30))]
tx_hex = tx.serialize().hex()
assert_raises_rpc_error(-25, max_burn_exceeded, self.nodes[2].sendrawtransaction, tx_hex, 0, 0.0009)
# Test a transaction where our burn falls short of maxburnamount
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.001
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_RETURN] + [OP_FALSE] * 30))]
tx_hex = tx.serialize().hex()
self.nodes[2].sendrawtransaction(hexstring=tx_hex, maxfeerate='0', maxburnamount='0.0011')
# Test a transaction where our burn equals maxburnamount
tx = self.wallet.create_self_transfer()['tx']
tx_val = 0.001
tx.vout = [CTxOut(int(Decimal(tx_val) * COIN), CScript([OP_RETURN] + [OP_FALSE] * 30))]
tx_hex = tx.serialize().hex()
self.nodes[2].sendrawtransaction(hexstring=tx_hex, maxfeerate='0', maxburnamount='0.001')
def sendrawtransaction_testmempoolaccept_tests(self):
self.log.info("Test sendrawtransaction/testmempoolaccept with maxfeerate")
fee_exceeds_max = "Fee exceeds maximum configured by user (e.g. -maxtxfee, maxfeerate)"
# Test a transaction with a small fee.
# Fee rate is 0.00100000 BTC/kvB
tx = self.wallet.create_self_transfer(fee_rate=Decimal('0.00100000'))
# Thus, testmempoolaccept should reject
testres = self.nodes[2].testmempoolaccept([tx['hex']], 0.00001000)[0]
assert_equal(testres['allowed'], False)
assert_equal(testres['reject-reason'], 'max-fee-exceeded')
# and sendrawtransaction should throw
assert_raises_rpc_error(-25, fee_exceeds_max, self.nodes[2].sendrawtransaction, tx['hex'], 0.00001000)
# and the following calls should both succeed
testres = self.nodes[2].testmempoolaccept(rawtxs=[tx['hex']])[0]
assert_equal(testres['allowed'], True)
self.nodes[2].sendrawtransaction(hexstring=tx['hex'])
# Test a transaction with a large fee.
# Fee rate is 0.20000000 BTC/kvB
tx = self.wallet.create_self_transfer(fee_rate=Decimal("0.20000000"))
# Thus, testmempoolaccept should reject
testres = self.nodes[2].testmempoolaccept([tx['hex']])[0]
assert_equal(testres['allowed'], False)
assert_equal(testres['reject-reason'], 'max-fee-exceeded')
# and sendrawtransaction should throw
assert_raises_rpc_error(-25, fee_exceeds_max, self.nodes[2].sendrawtransaction, tx['hex'])
# and the following calls should both succeed
testres = self.nodes[2].testmempoolaccept(rawtxs=[tx['hex']], maxfeerate='0.20000000')[0]
assert_equal(testres['allowed'], True)
self.nodes[2].sendrawtransaction(hexstring=tx['hex'], maxfeerate='0.20000000')
self.log.info("Test sendrawtransaction/testmempoolaccept with tx already in the chain")
self.generate(self.nodes[2], 1)
for node in self.nodes:
testres = node.testmempoolaccept([tx['hex']])[0]
assert_equal(testres['allowed'], False)
assert_equal(testres['reject-reason'], 'txn-already-known')
assert_raises_rpc_error(-27, 'Transaction already in block chain', node.sendrawtransaction, tx['hex'])
def decoderawtransaction_tests(self):
self.log.info("Test decoderawtransaction")
# witness transaction
encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000"
decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction
assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction
# non-witness transaction
encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000"
decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction
assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
# known ambiguous transaction in the chain (see https://github.com/bitcoin/bitcoin/issues/20579)
coinbase = "03c68708046ff8415c622f4254432e434f4d2ffabe6d6de1965d02c68f928e5b244ab1965115a36f56eb997633c7f690124bbf43644e23080000000ca3d3af6d005a65ff0200fd00000000"
encrawtx = f"020000000001010000000000000000000000000000000000000000000000000000000000000000ffffffff4b{coinbase}" \
"ffffffff03f4c1fb4b0000000016001497cfc76442fe717f2a3f0cc9c175f7561b6619970000000000000000266a24aa21a9ed957d1036a80343e0d1b659497e1b48a38ebe876a056d45965fac4a85cda84e1900000000000000002952534b424c4f434b3a8e092581ab01986cbadc84f4b43f4fa4bb9e7a2e2a0caf9b7cf64d939028e22c0120000000000000000000000000000000000000000000000000000000000000000000000000"
decrawtx = self.nodes[0].decoderawtransaction(encrawtx)
decrawtx_wit = self.nodes[0].decoderawtransaction(encrawtx, True)
assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # fails to decode as non-witness transaction
assert_equal(decrawtx, decrawtx_wit) # the witness interpretation should be chosen
assert_equal(decrawtx['vin'][0]['coinbase'], coinbase)
def transaction_version_number_tests(self):
self.log.info("Test transaction version numbers")
# Test the minimum transaction version number that fits in a signed 32-bit integer.
# As transaction version is unsigned, this should convert to its unsigned equivalent.
tx = CTransaction()
tx.nVersion = -0x80000000
rawtx = tx.serialize().hex()
decrawtx = self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['version'], 0x80000000)
# Test the maximum transaction version number that fits in a signed 32-bit integer.
tx = CTransaction()
tx.nVersion = 0x7fffffff
rawtx = tx.serialize().hex()
decrawtx = self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['version'], 0x7fffffff)
def raw_multisig_transaction_legacy_tests(self):
self.log.info("Test raw multisig transactions (legacy)")
# The traditional multisig workflow does not work with descriptor wallets so these are legacy only.
# The multisig workflow with descriptor wallets uses PSBTs and is tested elsewhere, no need to do them here.
# 2of2 test
addr1 = self.nodes[2].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[2].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
# Tests for createmultisig and addmultisigaddress
assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"])
# createmultisig can only take public keys
self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])
# addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here
assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1])
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address']
# use balance deltas instead of absolute values
bal = self.nodes[2].getbalance()
# send 1.2 BTC to msig adr
txId = self.nodes[0].sendtoaddress(mSigObj, 1.2)
self.sync_all()
self.generate(self.nodes[0], 1)
# node2 has both keys of the 2of2 ms addr, tx should affect the balance
assert_equal(self.nodes[2].getbalance(), bal + Decimal('1.20000000'))
# 2of3 test from different nodes
bal = self.nodes[2].getbalance()
addr1 = self.nodes[1].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr3 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[1].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
addr3Obj = self.nodes[2].getaddressinfo(addr3)
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address']
txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
decTx = self.nodes[0].gettransaction(txId)
rawTx = self.nodes[0].decoderawtransaction(decTx['hex'])
self.sync_all()
self.generate(self.nodes[0], 1)
# THIS IS AN INCOMPLETE FEATURE
# NODE2 HAS TWO OF THREE KEYS AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION
assert_equal(self.nodes[2].getbalance(), bal) # for now, assume the funds of a 2of3 multisig tx are not marked as spendable
txDetails = self.nodes[0].gettransaction(txId, True)
rawTx = self.nodes[0].decoderawtransaction(txDetails['hex'])
vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('2.20000000'))
bal = self.nodes[0].getbalance()
inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value']}]
outputs = {self.nodes[0].getnewaddress(): 2.19}
rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs)
assert_equal(rawTxPartialSigned['complete'], False) # node1 only has one key, can't comp. sign the tx
rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs)
assert_equal(rawTxSigned['complete'], True) # node2 can sign the tx compl., own two of three keys
self.nodes[2].sendrawtransaction(rawTxSigned['hex'])
rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex'])
self.sync_all()
self.generate(self.nodes[0], 1)
assert_equal(self.nodes[0].getbalance(), bal + Decimal('50.00000000') + Decimal('2.19000000')) # block reward + tx
# 2of2 test for combining transactions
bal = self.nodes[2].getbalance()
addr1 = self.nodes[1].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[1].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
mSigObjValid = self.nodes[2].getaddressinfo(mSigObj)
txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
decTx = self.nodes[0].gettransaction(txId)
rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex'])
self.sync_all()
self.generate(self.nodes[0], 1)
assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable
txDetails = self.nodes[0].gettransaction(txId, True)
rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex'])
vout = next(o for o in rawTx2['vout'] if o['value'] == Decimal('2.20000000'))
bal = self.nodes[0].getbalance()
inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value']}]
outputs = {self.nodes[0].getnewaddress(): 2.19}
rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs)
rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs)
self.log.debug(rawTxPartialSigned1)
assert_equal(rawTxPartialSigned1['complete'], False) # node1 only has one key, can't comp. sign the tx
rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs)
self.log.debug(rawTxPartialSigned2)
assert_equal(rawTxPartialSigned2['complete'], False) # node2 only has one key, can't comp. sign the tx
rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']])
self.log.debug(rawTxComb)
self.nodes[2].sendrawtransaction(rawTxComb)
rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb)
self.sync_all()
self.generate(self.nodes[0], 1)
assert_equal(self.nodes[0].getbalance(), bal + Decimal('50.00000000') + Decimal('2.19000000')) # block reward + tx
if __name__ == '__main__':
RawTransactionsTest().main()