You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bitcoin/test/functional/wallet_basic.py

817 lines
45 KiB

#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the wallet."""
from decimal import Decimal
from itertools import product
from test_framework.blocktools import COINBASE_MATURITY
from test_framework.descriptors import descsum_create
from test_framework.messages import (
COIN,
DEFAULT_ANCESTOR_LIMIT,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_array_result,
assert_equal,
assert_fee_amount,
assert_raises_rpc_error,
)
from test_framework.wallet_util import test_address
from test_framework.wallet import MiniWallet
NOT_A_NUMBER_OR_STRING = "Amount is not a number or string"
OUT_OF_RANGE = "Amount out of range"
class WalletTest(BitcoinTestFramework):
def add_options(self, parser):
self.add_wallet_options(parser)
def set_test_params(self):
self.num_nodes = 4
self.extra_args = [[
"-dustrelayfee=0", "-walletrejectlongchains=0", "-whitelist=noban@127.0.0.1"
]] * self.num_nodes
self.setup_clean_chain = True
self.supports_cli = False
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def setup_network(self):
self.setup_nodes()
# Only need nodes 0-2 running at start of test
self.stop_node(3)
self.connect_nodes(0, 1)
self.connect_nodes(1, 2)
self.connect_nodes(0, 2)
self.sync_all(self.nodes[0:3])
def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size):
"""Return curr_balance after asserting the fee was in range"""
fee = balance_with_fee - curr_balance
assert_fee_amount(fee, tx_size, fee_per_byte * 1000)
return curr_balance
def get_vsize(self, txn):
return self.nodes[0].decoderawtransaction(txn)['vsize']
def run_test(self):
# Check that there's no UTXO on none of the nodes
assert_equal(len(self.nodes[0].listunspent()), 0)
assert_equal(len(self.nodes[1].listunspent()), 0)
assert_equal(len(self.nodes[2].listunspent()), 0)
self.log.info("Mining blocks...")
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
walletinfo = self.nodes[0].getwalletinfo()
assert_equal(walletinfo['immature_balance'], 50)
assert_equal(walletinfo['balance'], 0)
self.sync_all(self.nodes[0:3])
self.generate(self.nodes[1], COINBASE_MATURITY + 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
assert_equal(self.nodes[0].getbalance(), 50)
assert_equal(self.nodes[1].getbalance(), 50)
assert_equal(self.nodes[2].getbalance(), 0)
# Check that only first and second nodes have UTXOs
utxos = self.nodes[0].listunspent()
assert_equal(len(utxos), 1)
assert_equal(len(self.nodes[1].listunspent()), 1)
assert_equal(len(self.nodes[2].listunspent()), 0)
self.log.info("Test gettxout")
confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"]
# First, outputs that are unspent both in the chain and in the
# mempool should appear with or without include_mempool
txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False)
assert_equal(txout['value'], 50)
txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True)
assert_equal(txout['value'], 50)
# Send 21 BTC from 0 to 2 using sendtoaddress call.
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11)
mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10)
self.log.info("Test gettxout (second part)")
# utxo spent in mempool should be visible if you exclude mempool
# but invisible if you include mempool
txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False)
assert_equal(txout['value'], 50)
txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index) # by default include_mempool=True
assert txout is None
txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True)
assert txout is None
# new utxo from mempool should be invisible if you exclude mempool
# but visible if you include mempool
txout = self.nodes[0].gettxout(mempool_txid, 0, False)
assert txout is None
txout1 = self.nodes[0].gettxout(mempool_txid, 0, True)
txout2 = self.nodes[0].gettxout(mempool_txid, 1, True)
# note the mempool tx will have randomly assigned indices
# but 10 will go to node2 and the rest will go to node0
balance = self.nodes[0].getbalance()
assert_equal(set([txout1['value'], txout2['value']]), set([10, balance]))
walletinfo = self.nodes[0].getwalletinfo()
assert_equal(walletinfo['immature_balance'], 0)
# Have node0 mine a block, thus it will collect its own fee.
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
# Exercise locking of unspent outputs
unspent_0 = self.nodes[2].listunspent()[0]
unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]}
# Trying to unlock an output which isn't locked should error
assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0])
# Locking an already-locked output should error
self.nodes[2].lockunspent(False, [unspent_0])
assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])
# Restarting the node should clear the lock
self.restart_node(2)
self.nodes[2].lockunspent(False, [unspent_0])
# Unloading and reloating the wallet should clear the lock
assert_equal(self.nodes[0].listwallets(), [self.default_wallet_name])
self.nodes[2].unloadwallet(self.default_wallet_name)
self.nodes[2].loadwallet(self.default_wallet_name)
assert_equal(len(self.nodes[2].listlockunspent()), 0)
# Locking non-persistently, then re-locking persistently, is allowed
self.nodes[2].lockunspent(False, [unspent_0])
self.nodes[2].lockunspent(False, [unspent_0], True)
# Restarting the node with the lock written to the wallet should keep the lock
self.restart_node(2, ["-walletrejectlongchains=0"])
assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])
# Unloading and reloading the wallet with a persistent lock should keep the lock
self.nodes[2].unloadwallet(self.default_wallet_name)
self.nodes[2].loadwallet(self.default_wallet_name)
assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])
# Locked outputs should not be used, even if they are the only available funds
assert_raises_rpc_error(-6, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20)
assert_equal([unspent_0], self.nodes[2].listlockunspent())
# Unlocking should remove the persistent lock
self.nodes[2].lockunspent(True, [unspent_0])
self.restart_node(2)
assert_equal(len(self.nodes[2].listlockunspent()), 0)
# Reconnect node 2 after restarts
self.connect_nodes(1, 2)
self.connect_nodes(0, 2)
assert_raises_rpc_error(-8, "txid must be of length 64 (not 34, for '0000000000000000000000000000000000')",
self.nodes[2].lockunspent, False,
[{"txid": "0000000000000000000000000000000000", "vout": 0}])
assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')",
self.nodes[2].lockunspent, False,
[{"txid": "ZZZ0000000000000000000000000000000000000000000000000000000000000", "vout": 0}])
assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction",
self.nodes[2].lockunspent, False,
[{"txid": "0000000000000000000000000000000000000000000000000000000000000000", "vout": 0}])
assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds",
self.nodes[2].lockunspent, False,
[{"txid": unspent_0["txid"], "vout": 999}])
# The lock on a manually selected output is ignored
unspent_0 = self.nodes[1].listunspent()[0]
self.nodes[1].lockunspent(False, [unspent_0])
tx = self.nodes[1].createrawtransaction([unspent_0], { self.nodes[1].getnewaddress() : 1 })
self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True})
# fundrawtransaction can lock an input
self.nodes[1].lockunspent(True, [unspent_0])
assert_equal(len(self.nodes[1].listlockunspent()), 0)
tx = self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True})['hex']
assert_equal(len(self.nodes[1].listlockunspent()), 1)
# Send transaction
tx = self.nodes[1].signrawtransactionwithwallet(tx)["hex"]
self.nodes[1].sendrawtransaction(tx)
assert_equal(len(self.nodes[1].listlockunspent()), 0)
# Have node1 generate 100 blocks (so node0 can recover the fee)
self.generate(self.nodes[1], COINBASE_MATURITY, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
# node0 should end up with 100 btc in block rewards plus fees, but
# minus the 21 plus fees sent to node2
assert_equal(self.nodes[0].getbalance(), 100 - 21)
assert_equal(self.nodes[2].getbalance(), 21)
# Node0 should have two unspent outputs.
# Create a couple of transactions to send them to node2, submit them through
# node1, and make sure both node0 and node2 pick them up properly:
node0utxos = self.nodes[0].listunspent(1)
assert_equal(len(node0utxos), 2)
# create both transactions
txns_to_send = []
for utxo in node0utxos:
inputs = []
outputs = {}
inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]})
outputs[self.nodes[2].getnewaddress()] = utxo["amount"] - 3
raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
txns_to_send.append(self.nodes[0].signrawtransactionwithwallet(raw_tx))
# Have node 1 (miner) send the transactions
self.nodes[1].sendrawtransaction(hexstring=txns_to_send[0]["hex"], maxfeerate=0)
self.nodes[1].sendrawtransaction(hexstring=txns_to_send[1]["hex"], maxfeerate=0)
# Have node1 mine a block to confirm transactions:
self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
assert_equal(self.nodes[0].getbalance(), 0)
assert_equal(self.nodes[2].getbalance(), 94)
# Verify that a spent output cannot be locked anymore
spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]}
assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0])
# Send 10 BTC normal
address = self.nodes[0].getnewaddress("test")
fee_per_byte = Decimal('0.001') / 1000
self.nodes[2].settxfee(fee_per_byte * 1000)
txid = self.nodes[2].sendtoaddress(address, 10, "", "", False)
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
assert_equal(self.nodes[0].getbalance(), Decimal('10'))
# Send 10 BTC with subtract fee from amount
txid = self.nodes[2].sendtoaddress(address, 10, "", "", True)
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_2_bal -= Decimal('10')
assert_equal(self.nodes[2].getbalance(), node_2_bal)
node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
self.log.info("Test sendmany")
# Sendmany 10 BTC
txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [])
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_0_bal += Decimal('10')
node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
assert_equal(self.nodes[0].getbalance(), node_0_bal)
# Sendmany 10 BTC with subtract fee from amount
txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [address])
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_2_bal -= Decimal('10')
assert_equal(self.nodes[2].getbalance(), node_2_bal)
node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
# Sendmany 5 BTC to two addresses with subtracting fee from both addresses
a0 = self.nodes[0].getnewaddress()
a1 = self.nodes[0].getnewaddress()
txid = self.nodes[2].sendmany(dummy='', amounts={a0: 5, a1: 5}, subtractfeefrom=[a0, a1])
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_2_bal -= Decimal('10')
assert_equal(self.nodes[2].getbalance(), node_2_bal)
tx = self.nodes[2].gettransaction(txid)
node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(tx['hex']))
assert_equal(self.nodes[0].getbalance(), node_0_bal)
expected_bal = Decimal('5') + (tx['fee'] / 2)
assert_equal(self.nodes[0].getreceivedbyaddress(a0), expected_bal)
assert_equal(self.nodes[0].getreceivedbyaddress(a1), expected_bal)
self.log.info("Test sendmany with fee_rate param (explicit fee rate in sat/vB)")
fee_rate_sat_vb = 2
fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
explicit_fee_rate_btc_kvb = Decimal(fee_rate_btc_kvb) / 1000
# Test passing fee_rate as a string
txid = self.nodes[2].sendmany(amounts={address: 10}, fee_rate=str(fee_rate_sat_vb))
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
balance = self.nodes[2].getbalance()
node_2_bal = self.check_fee_amount(balance, node_2_bal - Decimal('10'), explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
assert_equal(balance, node_2_bal)
node_0_bal += Decimal('10')
assert_equal(self.nodes[0].getbalance(), node_0_bal)
# Test passing fee_rate as an integer
amount = Decimal("0.0001")
txid = self.nodes[2].sendmany(amounts={address: amount}, fee_rate=fee_rate_sat_vb)
self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
balance = self.nodes[2].getbalance()
node_2_bal = self.check_fee_amount(balance, node_2_bal - amount, explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
assert_equal(balance, node_2_bal)
node_0_bal += amount
assert_equal(self.nodes[0].getbalance(), node_0_bal)
assert_raises_rpc_error(-8, "Unknown named parameter feeRate", self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=1, feeRate=1)
# Test setting explicit fee rate just below the minimum.
self.log.info("Test sendmany raises 'fee rate too low' if fee_rate of 0.99999999 is passed")
assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)",
self.nodes[2].sendmany, amounts={address: 10}, fee_rate=0.999)
self.log.info("Test sendmany raises if an invalid fee_rate is passed")
# Test fee_rate with zero values.
msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)"
for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]:
assert_raises_rpc_error(-6, msg, self.nodes[2].sendmany, amounts={address: 1}, fee_rate=zero_value)
msg = "Invalid amount"
# Test fee_rate values that don't pass fixed-point parsing checks.
for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]:
assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 1.0}, fee_rate=invalid_value)
# Test fee_rate values that cannot be represented in sat/vB.
for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999]:
assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value)
# Test fee_rate out of range (negative number).
assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=-1)
# Test type error.
for invalid_value in [True, {"foo": "bar"}]:
assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value)
self.log.info("Test sendmany raises if an invalid conf_target or estimate_mode is passed")
for target, mode in product([-1, 0, 1009], ["economical", "conservative"]):
assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008", # max value of 1008 per src/policy/fees.h
self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode)
for target, mode in product([-1, 0], ["btc/kb", "sat/b"]):
assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"',
self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode)
self.start_node(3, self.nodes[3].extra_args)
self.connect_nodes(0, 3)
self.sync_all()
# check if we can list zero value tx as available coins
# 1. create raw_tx
# 2. hex-changed one output to 0.0
# 3. sign and send
# 4. check if recipient (node0) can list the zero value tx
usp = self.nodes[1].listunspent(query_options={'minimumAmount': '49.998'})[0]
inputs = [{"txid": usp['txid'], "vout": usp['vout']}]
outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11}
raw_tx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") # replace 11.11 with 0.0 (int32)
signed_raw_tx = self.nodes[1].signrawtransactionwithwallet(raw_tx)
decoded_raw_tx = self.nodes[1].decoderawtransaction(signed_raw_tx['hex'])
zero_value_txid = decoded_raw_tx['txid']
self.nodes[1].sendrawtransaction(signed_raw_tx['hex'])
self.sync_all()
self.generate(self.nodes[1], 1) # mine a block
unspent_txs = self.nodes[0].listunspent() # zero value tx must be in listunspents output
found = False
for uTx in unspent_txs:
if uTx['txid'] == zero_value_txid:
found = True
assert_equal(uTx['amount'], Decimal('0'))
assert found
self.log.info("Test -walletbroadcast")
self.stop_nodes()
self.start_node(0, ["-walletbroadcast=0"])
self.start_node(1, ["-walletbroadcast=0"])
self.start_node(2, ["-walletbroadcast=0"])
self.connect_nodes(0, 1)
self.connect_nodes(1, 2)
self.connect_nodes(0, 2)
self.sync_all(self.nodes[0:3])
txid_not_broadcast = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)
tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast)
self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) # mine a block, tx should not be in there
assert_equal(self.nodes[2].getbalance(), node_2_bal) # should not be changed because tx was not broadcasted
# now broadcast from another node, mine a block, sync, and check the balance
self.nodes[1].sendrawtransaction(tx_obj_not_broadcast['hex'])
self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
node_2_bal += 2
tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast)
assert_equal(self.nodes[2].getbalance(), node_2_bal)
# create another tx
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)
# restart the nodes with -walletbroadcast=1
self.stop_nodes()
self.start_node(0)
self.start_node(1)
self.start_node(2)
self.connect_nodes(0, 1)
self.connect_nodes(1, 2)
self.connect_nodes(0, 2)
self.sync_blocks(self.nodes[0:3])
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_blocks(self.nodes[0:3]))
node_2_bal += 2
# tx should be added to balance because after restarting the nodes tx should be broadcast
assert_equal(self.nodes[2].getbalance(), node_2_bal)
# send a tx with value in a string (PR#6380 +)
txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2")
tx_obj = self.nodes[0].gettransaction(txid)
assert_equal(tx_obj['amount'], Decimal('-2'))
txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001")
tx_obj = self.nodes[0].gettransaction(txid)
assert_equal(tx_obj['amount'], Decimal('-0.0001'))
# check if JSON parser can handle scientific notation in strings
txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4")
tx_obj = self.nodes[0].gettransaction(txid)
assert_equal(tx_obj['amount'], Decimal('-0.0001'))
# General checks for errors from incorrect inputs
# This will raise an exception because the amount is negative
assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "-1")
# This will raise an exception because the amount type is wrong
assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4")
# This will raise an exception since generate does not accept a string
assert_raises_rpc_error(-3, "not of expected type number", self.generate, self.nodes[0], "2")
if not self.options.descriptors:
# This will raise an exception for the invalid private key format
assert_raises_rpc_error(-5, "Invalid private key encoding", self.nodes[0].importprivkey, "invalid")
# This will raise an exception for importing an address with the PS2H flag
temp_address = self.nodes[1].getnewaddress("", "p2sh-segwit")
assert_raises_rpc_error(-5, "Cannot use the p2sh flag with an address - use a script instead", self.nodes[0].importaddress, temp_address, "label", False, True)
# This will raise an exception for attempting to dump the private key of an address you do not own
assert_raises_rpc_error(-3, "Address does not refer to a key", self.nodes[0].dumpprivkey, temp_address)
# This will raise an exception for attempting to get the private key of an invalid Bitcoin address
assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].dumpprivkey, "invalid")
# This will raise an exception for attempting to set a label for an invalid Bitcoin address
assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].setlabel, "invalid address", "label")
# This will raise an exception for importing an invalid address
assert_raises_rpc_error(-5, "Invalid Bitcoin address or script", self.nodes[0].importaddress, "invalid")
# This will raise an exception for attempting to import a pubkey that isn't in hex
assert_raises_rpc_error(-5, "Pubkey must be a hex string", self.nodes[0].importpubkey, "not hex")
# This will raise an exception for importing an invalid pubkey
assert_raises_rpc_error(-5, "Pubkey is not a valid public key", self.nodes[0].importpubkey, "5361746f736869204e616b616d6f746f")
# Bech32m addresses cannot be imported into a legacy wallet
assert_raises_rpc_error(-5, "Bech32m addresses cannot be imported into legacy wallets", self.nodes[0].importaddress, "bcrt1p0xlxvlhemja6c4dqv22uapctqupfhlxm9h8z3k2e72q4k9hcz7vqc8gma6")
# Import address and private key to check correct behavior of spendable unspents
# 1. Send some coins to generate new UTXO
address_to_import = self.nodes[2].getnewaddress()
utxo = self.create_outpoints(self.nodes[0], outputs=[{address_to_import: 1}])[0]
self.sync_mempools(self.nodes[0:3])
self.nodes[2].lockunspent(False, [utxo])
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
self.log.info("Test sendtoaddress with fee_rate param (explicit fee rate in sat/vB)")
prebalance = self.nodes[2].getbalance()
assert prebalance > 2
address = self.nodes[1].getnewaddress()
amount = 3
fee_rate_sat_vb = 2
fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
# Test passing fee_rate as an integer
txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=fee_rate_sat_vb)
tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
postbalance = self.nodes[2].getbalance()
fee = prebalance - postbalance - Decimal(amount)
assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb))
prebalance = self.nodes[2].getbalance()
amount = Decimal("0.001")
fee_rate_sat_vb = 1.23
fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
# Test passing fee_rate as a string
txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=str(fee_rate_sat_vb))
tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
postbalance = self.nodes[2].getbalance()
fee = prebalance - postbalance - amount
assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb))
# Test setting explicit fee rate just below the minimum.
self.log.info("Test sendtoaddress raises 'fee rate too low' if fee_rate of 0.99999999 is passed")
assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)",
self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=0.999)
self.log.info("Test sendtoaddress raises if an invalid fee_rate is passed")
# Test fee_rate with zero values.
msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)"
for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]:
assert_raises_rpc_error(-6, msg, self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=zero_value)
msg = "Invalid amount"
# Test fee_rate values that don't pass fixed-point parsing checks.
for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]:
assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value)
# Test fee_rate values that cannot be represented in sat/vB.
for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999]:
assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=10, fee_rate=invalid_value)
# Test fee_rate out of range (negative number).
assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=-1)
# Test type error.
for invalid_value in [True, {"foo": "bar"}]:
assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value)
self.log.info("Test sendtoaddress raises if an invalid conf_target or estimate_mode is passed")
for target, mode in product([-1, 0, 1009], ["economical", "conservative"]):
assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008", # max value of 1008 per src/policy/fees.h
self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode)
for target, mode in product([-1, 0], ["btc/kb", "sat/b"]):
assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"',
self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode)
# 2. Import address from node2 to node1
self.nodes[1].importaddress(address_to_import)
# 3. Validate that the imported address is watch-only on node1
assert self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"]
# 4. Check that the unspents after import are not spendable
assert_array_result(self.nodes[1].listunspent(),
{"address": address_to_import},
{"spendable": False})
# 5. Import private key of the previously imported address on node1
priv_key = self.nodes[2].dumpprivkey(address_to_import)
self.nodes[1].importprivkey(priv_key)
# 6. Check that the unspents are now spendable on node1
assert_array_result(self.nodes[1].listunspent(),
{"address": address_to_import},
{"spendable": True})
# Mine a block from node0 to an address from node1
coinbase_addr = self.nodes[1].getnewaddress()
block_hash = self.generatetoaddress(self.nodes[0], 1, coinbase_addr, sync_fun=lambda: self.sync_all(self.nodes[0:3]))[0]
coinbase_txid = self.nodes[0].getblock(block_hash)['tx'][0]
# Check that the txid and balance is found by node1
self.nodes[1].gettransaction(coinbase_txid)
# check if wallet or blockchain maintenance changes the balance
self.sync_all(self.nodes[0:3])
blocks = self.generate(self.nodes[0], 2, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
balance_nodes = [self.nodes[i].getbalance() for i in range(3)]
block_count = self.nodes[0].getblockcount()
# Check modes:
# - True: unicode escaped as \u....
# - False: unicode directly as UTF-8
for mode in [True, False]:
self.nodes[0].rpc.ensure_ascii = mode
# unicode check: Basic Multilingual Plane, Supplementary Plane respectively
for label in [u'рыба', u'𝅘𝅥𝅯']:
addr = self.nodes[0].getnewaddress()
self.nodes[0].setlabel(addr, label)
test_address(self.nodes[0], addr, labels=[label])
assert label in self.nodes[0].listlabels()
self.nodes[0].rpc.ensure_ascii = True # restore to default
# -reindex tests
chainlimit = 6
self.log.info("Test -reindex")
self.stop_nodes()
# set lower ancestor limit for later
self.start_node(0, ['-reindex', "-walletrejectlongchains=0", "-limitancestorcount=" + str(chainlimit)])
self.start_node(1, ['-reindex', "-limitancestorcount=" + str(chainlimit)])
self.start_node(2, ['-reindex', "-limitancestorcount=" + str(chainlimit)])
# reindex will leave rpc warm up "early"; Wait for it to finish
self.wait_until(lambda: [block_count] * 3 == [self.nodes[i].getblockcount() for i in range(3)])
assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)])
# Exercise listsinceblock with the last two blocks
coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0])
assert_equal(coinbase_tx_1["lastblock"], blocks[1])
assert_equal(len(coinbase_tx_1["transactions"]), 1)
assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1])
assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0)
# ==Check that wallet prefers to use coins that don't exceed mempool limits =====
# Get all non-zero utxos together and split into two chains
chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()]
self.nodes[0].sendall(recipients=chain_addrs)
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
# Make a long chain of unconfirmed payments without hitting mempool limit
# Each tx we make leaves only one output of change on a chain 1 longer
# Since the amount to send is always much less than the outputs, we only ever need one output
# So we should be able to generate exactly chainlimit txs for each original output
sending_addr = self.nodes[1].getnewaddress()
txid_list = []
for _ in range(chainlimit * 2):
txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')))
assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2)
assert_equal(len(txid_list), chainlimit * 2)
# Without walletrejectlongchains, we will still generate a txid
# The tx will be stored in the wallet but not accepted to the mempool
extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))
assert extra_txid not in self.nodes[0].getrawmempool()
assert extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()]
self.nodes[0].abandontransaction(extra_txid)
total_txs = len(self.nodes[0].listtransactions("*", 99999))
# Try with walletrejectlongchains
# Double chain limit but require combining inputs, so we pass AttemptSelection
self.stop_node(0)
extra_args = ["-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)]
self.start_node(0, extra_args=extra_args)
# wait until the wallet has submitted all transactions to the mempool
self.wait_until(lambda: len(self.nodes[0].getrawmempool()) == chainlimit * 2)
# Prevent potential race condition when calling wallet RPCs right after restart
self.nodes[0].syncwithvalidationinterfacequeue()
node0_balance = self.nodes[0].getbalance()
# With walletrejectlongchains we will not create the tx and store it in our wallet.
assert_raises_rpc_error(-6, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01'))
# Verify nothing new in wallet
assert_equal(total_txs, len(self.nodes[0].listtransactions("*", 99999)))
# Test getaddressinfo on external address. Note that these addresses are taken from disablewallet.py
assert_raises_rpc_error(-5, "Invalid or unsupported Base58-encoded address.", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy")
address_info = self.nodes[0].getaddressinfo("mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ")
assert_equal(address_info['address'], "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ")
assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac")
assert not address_info["ismine"]
assert not address_info["iswatchonly"]
assert not address_info["isscript"]
assert not address_info["ischange"]
# Test getaddressinfo 'ischange' field on change address.
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
destination = self.nodes[1].getnewaddress()
txid = self.nodes[0].sendtoaddress(destination, 0.123)
tx = self.nodes[0].gettransaction(txid=txid, verbose=True)['decoded']
output_addresses = [vout['scriptPubKey']['address'] for vout in tx["vout"]]
assert len(output_addresses) > 1
for address in output_addresses:
ischange = self.nodes[0].getaddressinfo(address)['ischange']
assert_equal(ischange, address != destination)
if ischange:
change = address
self.nodes[0].setlabel(change, 'foobar')
assert_equal(self.nodes[0].getaddressinfo(change)['ischange'], False)
# Test gettransaction response with different arguments.
self.log.info("Testing gettransaction response with different arguments...")
self.nodes[0].setlabel(change, 'baz')
baz = self.nodes[0].listtransactions(label="baz", count=1)[0]
expected_receive_vout = {"label": "baz",
"address": baz["address"],
"amount": baz["amount"],
"category": baz["category"],
"vout": baz["vout"]}
expected_fields = frozenset({'amount', 'bip125-replaceable', 'confirmations', 'details', 'fee',
'hex', 'lastprocessedblock', 'time', 'timereceived', 'trusted', 'txid', 'wtxid', 'walletconflicts'})
verbose_field = "decoded"
expected_verbose_fields = expected_fields | {verbose_field}
self.log.debug("Testing gettransaction response without verbose")
tx = self.nodes[0].gettransaction(txid=txid)
assert_equal(set([*tx]), expected_fields)
assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)
self.log.debug("Testing gettransaction response with verbose set to False")
tx = self.nodes[0].gettransaction(txid=txid, verbose=False)
assert_equal(set([*tx]), expected_fields)
assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)
self.log.debug("Testing gettransaction response with verbose set to True")
tx = self.nodes[0].gettransaction(txid=txid, verbose=True)
assert_equal(set([*tx]), expected_verbose_fields)
assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)
assert_equal(tx[verbose_field], self.nodes[0].decoderawtransaction(tx["hex"]))
self.log.info("Test send* RPCs with verbose=True")
address = self.nodes[0].getnewaddress("test")
txid_feeReason_one = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=True)
assert_equal(txid_feeReason_one["fee_reason"], "Fallback fee")
txid_feeReason_two = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=True)
assert_equal(txid_feeReason_two["fee_reason"], "Fallback fee")
self.log.info("Test send* RPCs with verbose=False")
txid_feeReason_three = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=False)
assert_equal(self.nodes[2].gettransaction(txid_feeReason_three)['txid'], txid_feeReason_three)
txid_feeReason_four = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=False)
assert_equal(self.nodes[2].gettransaction(txid_feeReason_four)['txid'], txid_feeReason_four)
if self.options.descriptors:
self.log.info("Testing 'listunspent' outputs the parent descriptor(s) of coins")
# Create two multisig descriptors, and send a UTxO each.
multi_a = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YBNjUo96Jxd1u4XKWgnoc7LsA1jz3Yc2NiDbhtfBhaBtemB73n9V5vtJHwU6FVXwggTbeoJWQ1rzdz8ysDuQkpnaHyvnvzR/*,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*))")
multi_b = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*,tpubD6NzVbkrYhZ4Y2RLiuEzNQkntjmsLpPYDm3LTRBYynUQtDtpzeUKAcb9sYthSFL3YR74cdFgF5mW8yKxv2W2CWuZDFR2dUpE5PF9kbrVXNZ/*))")
addr_a = self.nodes[0].deriveaddresses(multi_a, 0)[0]
addr_b = self.nodes[0].deriveaddresses(multi_b, 0)[0]
txid_a = self.nodes[0].sendtoaddress(addr_a, 0.01)
txid_b = self.nodes[0].sendtoaddress(addr_b, 0.01)
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
# Now import the descriptors, make sure we can identify on which descriptor each coin was received.
self.nodes[0].createwallet(wallet_name="wo", descriptors=True, disable_private_keys=True)
wo_wallet = self.nodes[0].get_wallet_rpc("wo")
wo_wallet.importdescriptors([
{
"desc": multi_a,
"active": False,
"timestamp": "now",
},
{
"desc": multi_b,
"active": False,
"timestamp": "now",
},
])
coins = wo_wallet.listunspent(minconf=0)
assert_equal(len(coins), 2)
coin_a = next(c for c in coins if c["txid"] == txid_a)
assert_equal(coin_a["parent_descs"][0], multi_a)
coin_b = next(c for c in coins if c["txid"] == txid_b)
assert_equal(coin_b["parent_descs"][0], multi_b)
self.nodes[0].unloadwallet("wo")
self.log.info("Test -spendzeroconfchange")
self.restart_node(0, ["-spendzeroconfchange=0"])
# create new wallet and fund it with a confirmed UTXO
self.nodes[0].createwallet(wallet_name="zeroconf", load_on_startup=True)
zeroconf_wallet = self.nodes[0].get_wallet_rpc("zeroconf")
default_wallet = self.nodes[0].get_wallet_rpc(self.default_wallet_name)
default_wallet.sendtoaddress(zeroconf_wallet.getnewaddress(), Decimal('1.0'))
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
utxos = zeroconf_wallet.listunspent(minconf=0)
assert_equal(len(utxos), 1)
assert_equal(utxos[0]['confirmations'], 1)
# spend confirmed UTXO to ourselves
zeroconf_wallet.sendall(recipients=[zeroconf_wallet.getnewaddress()])
utxos = zeroconf_wallet.listunspent(minconf=0)
assert_equal(len(utxos), 1)
assert_equal(utxos[0]['confirmations'], 0)
# accounts for untrusted pending balance
bal = zeroconf_wallet.getbalances()
assert_equal(bal['mine']['trusted'], 0)
assert_equal(bal['mine']['untrusted_pending'], utxos[0]['amount'])
# spending an unconfirmed UTXO sent to ourselves should fail
assert_raises_rpc_error(-6, "Insufficient funds", zeroconf_wallet.sendtoaddress, zeroconf_wallet.getnewaddress(), Decimal('0.5'))
# check that it works again with -spendzeroconfchange set (=default)
self.restart_node(0, ["-spendzeroconfchange=1"])
zeroconf_wallet = self.nodes[0].get_wallet_rpc("zeroconf")
utxos = zeroconf_wallet.listunspent(minconf=0)
assert_equal(len(utxos), 1)
assert_equal(utxos[0]['confirmations'], 0)
# accounts for trusted balance
bal = zeroconf_wallet.getbalances()
assert_equal(bal['mine']['trusted'], utxos[0]['amount'])
assert_equal(bal['mine']['untrusted_pending'], 0)
zeroconf_wallet.sendtoaddress(zeroconf_wallet.getnewaddress(), Decimal('0.5'))
self.test_chain_listunspent()
def test_chain_listunspent(self):
if not self.options.descriptors:
return
self.wallet = MiniWallet(self.nodes[0])
self.nodes[0].get_wallet_rpc(self.default_wallet_name).sendtoaddress(self.wallet.get_address(), "5")
self.generate(self.wallet, 1, sync_fun=self.no_op)
self.nodes[0].createwallet("watch_wallet", disable_private_keys=True)
watch_wallet = self.nodes[0].get_wallet_rpc("watch_wallet")
watch_wallet.importaddress(self.wallet.get_address())
# DEFAULT_ANCESTOR_LIMIT transactions off a confirmed tx should be fine
chain = self.wallet.create_self_transfer_chain(chain_length=DEFAULT_ANCESTOR_LIMIT)
ancestor_vsize = 0
ancestor_fees = Decimal(0)
for i, t in enumerate(chain):
ancestor_vsize += t["tx"].get_vsize()
ancestor_fees += t["fee"]
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=t["hex"])
# Check that listunspent ancestor{count, size, fees} yield the correct results
wallet_unspent = watch_wallet.listunspent(minconf=0)
this_unspent = next(utxo_info for utxo_info in wallet_unspent if utxo_info["txid"] == t["txid"])
assert_equal(this_unspent['ancestorcount'], i + 1)
assert_equal(this_unspent['ancestorsize'], ancestor_vsize)
assert_equal(this_unspent['ancestorfees'], ancestor_fees * COIN)
if __name__ == '__main__':
WalletTest().main()