Bitcoin Core integration/staging tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
Pieter Wuille c27fdc0b97
Document some preconditions
10 years ago
include Document some preconditions 10 years ago
m4
obj
src Merge pull request #95 10 years ago
.gitignore Better .gitignore for bench binaries 10 years ago
.travis.yml Implementations for scalar without data-dependent branches. 10 years ago
COPYING
Makefile.am Implementations for scalar without data-dependent branches. 10 years ago
README.md Nothing-up-my-sleeving blinding for a*G 10 years ago
TODO
autogen.sh build: add autogen. How was this missing? 11 years ago
configure.ac Implementations for scalar without data-dependent branches. 10 years ago
libsecp256k1.pc.in packaging: fixup pkg-config 11 years ago
nasm_lt.sh

README.md

libsecp256k1

Build Status

Optimized C library for EC operations on curve secp256k1.

This library is experimental, so use at your own risk.

Features:

  • Low-level field and group operations on secp256k1.
  • ECDSA signing/verification and key generation.
  • Adding/multiplying private/public keys.
  • Serialization/parsing of private keys, public keys, signatures.
  • Very efficient implementation.

Implementation details

  • General
    • Avoid dynamic memory usage almost everywhere.
  • Field operations
    • Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
      • Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
      • Using 10 26-bit limbs.
      • Using GMP.
    • Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
  • Group operations
    • Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
    • Use addition between points in Jacobian and affine coordinates where possible.
  • Point multiplication for verification (aP + bG).
    • Use wNAF notation for point multiplicands.
    • Use a much larger window for multiples of G, using precomputed multiples.
    • Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
    • Optionally use secp256k1's efficiently-computable endomorphism to split the multiplicands into 4 half-sized ones first.
  • Point multiplication for signing
    • Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
    • Slice the precomputed table in memory per byte, so memory access to the table becomes uniform.
    • Not fully constant-time, but the precomputed tables add and eventually subtract points for which no known scalar (private key) is known, blinding non-constant time effects even from an attacker with control over the private key used.

Build steps

libsecp256k1 is built using autotools:

$ ./autogen.sh
$ ./configure
$ make
$ sudo make install  # optional