#ifndef _SECP256K1_GROUP_ #define _SECP256K1_GROUP_ #include "field.h" namespace secp256k1 { class GroupElemJac; /** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */ class GroupElem { protected: bool fInfinity; FieldElem x; FieldElem y; public: /** Creates the point at infinity */ GroupElem() { fInfinity = true; } /** Creates the point with given affine coordinates */ GroupElem(const FieldElem &xin, const FieldElem &yin) { fInfinity = false; x = xin; y = yin; } /** Checks whether this is the point at infinity */ bool IsInfinity() const { return fInfinity; } void SetNeg(const GroupElem &p) { *this = p; y.Normalize(); y.SetNeg(y, 1); } void GetX(FieldElem &xout) const { xout = x; } void GetY(FieldElem &yout) const { yout = y; } std::string ToString() const { if (fInfinity) return "(inf)"; FieldElem xc = x, yc = y; return "(" + xc.ToString() + "," + yc.ToString() + ")"; } void SetJac(GroupElemJac &jac); friend class GroupElemJac; }; /** Represents a point on the secp256k1 curve, with jacobian coordinates */ class GroupElemJac : private GroupElem { protected: FieldElem z; public: /** Creates the point at infinity */ GroupElemJac() : GroupElem(), z(1) {} /** Creates the point with given affine coordinates */ GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {} GroupElemJac(const GroupElem &in) : GroupElem(in), z(1) {} void SetJac(GroupElemJac &jac) { *this = jac; } /** Checks whether this is a non-infinite point on the curve */ bool IsValid() const { if (IsInfinity()) return false; // y^2 = x^3 + 7 // (Y/Z^3)^2 = (X/Z^2)^3 + 7 // Y^2 / Z^6 = X^3 / Z^6 + 7 // Y^2 = X^3 + 7*Z^6 FieldElem y2; y2.SetSquare(y); FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x); FieldElem z2; z2.SetSquare(z); FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2); z6 *= 7; x3 += z6; return y2 == x3; } /** Returns the affine coordinates of this point */ void GetAffine(GroupElem &aff) { z.SetInverse(z); FieldElem z2; z2.SetSquare(z); FieldElem z3; z3.SetMult(z,z2); x.SetMult(x,z2); y.SetMult(y,z3); z = FieldElem(1); aff.fInfinity = fInfinity; aff.x = x; aff.y = y; } void GetX(FieldElem &xout) { FieldElem zi; zi.SetInverse(z); zi.SetSquare(zi); xout.SetMult(x, zi); } bool IsInfinity() const { return fInfinity; } void GetY(FieldElem &yout) { FieldElem zi; zi.SetInverse(z); FieldElem zi3; zi3.SetSquare(zi); zi3.SetMult(zi, zi3); yout.SetMult(y, zi3); } void SetNeg(const GroupElemJac &p) { *this = p; y.Normalize(); y.SetNeg(y, 1); } /** Sets this point to have a given X coordinate & given Y oddness */ void SetCompressed(const FieldElem &xin, bool fOdd) { x = xin; FieldElem x2; x2.SetSquare(x); FieldElem x3; x3.SetMult(x,x2); fInfinity = false; FieldElem c(7); c += x3; y.SetSquareRoot(c); z = FieldElem(1); if (y.IsOdd() != fOdd) y.SetNeg(y,1); } /** Sets this point to be the EC double of another */ void SetDouble(const GroupElemJac &p) { FieldElem t5 = p.y; if (p.fInfinity || t5.IsZero()) { fInfinity = true; return; } FieldElem t1,t2,t3,t4; z.SetMult(t5,p.z); z *= 2; // Z' = 2*Y*Z (2) t1.SetSquare(p.x); t1 *= 3; // T1 = 3*X^2 (3) t2.SetSquare(t1); // T2 = 9*X^4 (1) t3.SetSquare(t5); t3 *= 2; // T3 = 2*Y^2 (2) t4.SetSquare(t3); t4 *= 2; // T4 = 8*Y^4 (2) t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1) x = t3; x *= 4; // X' = 8*X*Y^2 (4) x.SetNeg(x,4); // X' = -8*X*Y^2 (5) x += t2; // X' = 9*X^4 - 8*X*Y^2 (6) t2.SetNeg(t2,1); // T2 = -9*X^4 (2) t3 *= 6; // T3 = 12*X*Y^2 (6) t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8) y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) t2.SetNeg(t4,2); // T2 = -8*Y^4 (3) y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) fInfinity = false; } /** Sets this point to be the EC addition of two others */ void SetAdd(const GroupElemJac &p, const GroupElemJac &q) { if (p.fInfinity) { *this = q; return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z; FieldElem z22; z22.SetSquare(z2); FieldElem z12; z12.SetSquare(z1); FieldElem u1; u1.SetMult(x1, z22); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z.SetMult(z1,z2); z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } /** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */ void SetAdd(const GroupElemJac &p, const GroupElem &q) { if (p.fInfinity) { x = q.x; y = q.y; fInfinity = q.fInfinity; z = FieldElem(1); return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y; FieldElem z12; z12.SetSquare(z1); FieldElem u1 = x1; u1.Normalize(); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1 = y1; s1.Normalize(); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z = p.z; z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } std::string ToString() const { GroupElemJac cop = *this; GroupElem aff; cop.GetAffine(aff); return aff.ToString(); } void SetMulLambda(const GroupElemJac &p); }; void GroupElem::SetJac(GroupElemJac &jac) { jac.GetAffine(*this); } static const unsigned char order_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41}; static const unsigned char g_x_[] = {0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98}; static const unsigned char g_y_[] = {0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8}; // properties of secp256k1's efficiently computable endomorphism static const unsigned char lambda_[] = {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}; static const unsigned char beta_[] = {0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee}; static const unsigned char a1b2_[] = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}; static const unsigned char b1_[] = {0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}; static const unsigned char a2_[] = {0x01, 0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, 0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}; class GroupConstants { private: Context ctx; const FieldElem g_x; const FieldElem g_y; public: const Number order; const GroupElem g; const FieldElem beta; const Number lambda, a1b2, b1, a2; GroupConstants() : order(ctx, order_, sizeof(order_)), g_x(g_x_), g_y(g_y_), g(g_x,g_y), beta(beta_), lambda(ctx, lambda_, sizeof(lambda_)), a1b2(ctx, a1b2_, sizeof(a1b2_)), b1(ctx, b1_, sizeof(b1_)), a2(ctx, a2_, sizeof(a2_)) {} }; const GroupConstants &GetGroupConst() { static const GroupConstants group_const; return group_const; } void GroupElemJac::SetMulLambda(const GroupElemJac &p) { FieldElem beta = GetGroupConst().beta; *this = p; x.SetMult(x, beta); } void SplitExp(Context &ctx, const Number &exp, Number &exp1, Number &exp2) { const GroupConstants &c = GetGroupConst(); Context ct(ctx); Number bnc1(ct), bnc2(ct), bnt1(ct), bnt2(ct), bnn2(ct); bnn2.SetNumber(c.order); bnn2.Shift1(); bnc1.SetMult(ct, exp, c.a1b2); bnc1.SetAdd(ct, bnc1, bnn2); bnc1.SetDiv(ct, bnc1, c.order); bnc2.SetMult(ct, exp, c.b1); bnc2.SetAdd(ct, bnc2, bnn2); bnc2.SetDiv(ct, bnc2, c.order); bnt1.SetMult(ct, bnc1, c.a1b2); bnt2.SetMult(ct, bnc2, c.a2); bnt1.SetAdd(ct, bnt1, bnt2); exp1.SetSub(ct, exp, bnt1); bnt1.SetMult(ct, bnc1, c.b1); bnt2.SetMult(ct, bnc2, c.a1b2); exp2.SetSub(ct, bnt1, bnt2); } } #endif