#ifndef _SECP256K1_ # define _SECP256K1_ # ifdef __cplusplus extern "C" { # endif #include /* These rules specify the order of arguments in API calls: * * 1. Context pointers go first, followed by output arguments, combined * output/input arguments, and finally input-only arguments. * 2. Array lengths always immediately the follow the argument whose length * they describe, even if this violates rule 1. * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated * later go first. This means: signatures, public nonces, private nonces, * messages, public keys, secret keys, tweaks. * 4. Arguments that are not data pointers go last, from more complex to less * complex: function pointers, algorithm names, messages, void pointers, * counts, flags, booleans. * 5. Opaque data pointers follow the function pointer they are to be passed to. */ /** Opaque data structure that holds context information (precomputed tables etc.). * * The purpose of context structures is to cache large precomputed data tables * that are expensive to construct, and also to maintain the randomization data * for blinding. * * Do not create a new context object for each operation, as construction is * far slower than all other API calls (~100 times slower than an ECDSA * verification). * * A constructed context can safely be used from multiple threads * simultaneously, but API call that take a non-const pointer to a context * need exclusive access to it. In particular this is the case for * secp256k1_context_destroy and secp256k1_context_randomize. * * Regarding randomization, either do it once at creation time (in which case * you do not need any locking for the other calls), or use a read-write lock. */ typedef struct secp256k1_context_struct secp256k1_context; /** Opaque data structure that holds a parsed and valid public key. * * The exact representation of data inside is implementation defined and not * guaranteed to be portable between different platforms or versions. It is * however guaranteed to be 64 bytes in size, and can be safely copied/moved. * If you need to convert to a format suitable for storage or transmission, use * secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. * * Furthermore, it is guaranteed that identical public keys (ignoring * compression) will have identical representation, so they can be memcmp'ed. */ typedef struct { unsigned char data[64]; } secp256k1_pubkey; /** Opaque data structured that holds a parsed ECDSA signature. * * The exact representation of data inside is implementation defined and not * guaranteed to be portable between different platforms or versions. It is * however guaranteed to be 64 bytes in size, and can be safely copied/moved. * If you need to convert to a format suitable for storage or transmission, use * the secp256k1_ecdsa_signature_serialize_* and * secp256k1_ecdsa_signature_serialize_* functions. * * Furthermore, it is guaranteed to identical signatures will have identical * representation, so they can be memcmp'ed. */ typedef struct { unsigned char data[64]; } secp256k1_ecdsa_signature; /** A pointer to a function to deterministically generate a nonce. * * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail. * Out: nonce32: pointer to a 32-byte array to be filled by the function. * In: msg32: the 32-byte message hash being verified (will not be NULL) * key32: pointer to a 32-byte secret key (will not be NULL) * algo16: pointer to a 16-byte array describing the signature * algorithm (will be NULL for ECDSA for compatibility). * data: Arbitrary data pointer that is passed through. * attempt: how many iterations we have tried to find a nonce. * This will almost always be 0, but different attempt values * are required to result in a different nonce. * * Except for test cases, this function should compute some cryptographic hash of * the message, the algorithm, the key and the attempt. */ typedef int (*secp256k1_nonce_function)( unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt ); # if !defined(SECP256K1_GNUC_PREREQ) # if defined(__GNUC__)&&defined(__GNUC_MINOR__) # define SECP256K1_GNUC_PREREQ(_maj,_min) \ ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min)) # else # define SECP256K1_GNUC_PREREQ(_maj,_min) 0 # endif # endif # if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) # if SECP256K1_GNUC_PREREQ(2,7) # define SECP256K1_INLINE __inline__ # elif (defined(_MSC_VER)) # define SECP256K1_INLINE __inline # else # define SECP256K1_INLINE # endif # else # define SECP256K1_INLINE inline # endif /**Warning attributes * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out * some paranoid null checks. */ # if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) # define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__)) # else # define SECP256K1_WARN_UNUSED_RESULT # endif # if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) # define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x))) # else # define SECP256K1_ARG_NONNULL(_x) # endif /** Flags to pass to secp256k1_context_create. */ # define SECP256K1_CONTEXT_VERIFY (1 << 0) # define SECP256K1_CONTEXT_SIGN (1 << 1) /** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */ # define SECP256K1_EC_COMPRESSED (1 << 0) /** Create a secp256k1 context object. * * Returns: a newly created context object. * In: flags: which parts of the context to initialize. */ secp256k1_context* secp256k1_context_create( unsigned int flags ) SECP256K1_WARN_UNUSED_RESULT; /** Copies a secp256k1 context object. * * Returns: a newly created context object. * Args: ctx: an existing context to copy (cannot be NULL) */ secp256k1_context* secp256k1_context_clone( const secp256k1_context* ctx ) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; /** Destroy a secp256k1 context object. * * The context pointer may not be used afterwards. * Args: ctx: an existing context to destroy (cannot be NULL) */ void secp256k1_context_destroy( secp256k1_context* ctx ); /** Set a callback function to be called when an illegal argument is passed to * an API call. It will only trigger for violations that are mentioned * explicitly in the header. * * The philosophy is that these shouldn't be dealt with through a * specific return value, as calling code should not have branches to deal with * the case that this code itself is broken. * * On the other hand, during debug stage, one would want to be informed about * such mistakes, and the default (crashing) may be inadvisable. * When this callback is triggered, the API function called is guaranteed not * to cause a crash, though its return value and output arguments are * undefined. * * Args: ctx: an existing context object (cannot be NULL) * In: fun: a pointer to a function to call when an illegal argument is * passed to the API, taking a message and an opaque pointer * (NULL restores a default handler that calls abort). * data: the opaque pointer to pass to fun above. */ void secp256k1_context_set_illegal_callback( secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data ) SECP256K1_ARG_NONNULL(1); /** Set a callback function to be called when an internal consistency check * fails. The default is crashing. * * This can only trigger in case of a hardware failure, miscompilation, * memory corruption, serious bug in the library, or other error would can * otherwise result in undefined behaviour. It will not trigger due to mere * incorrect usage of the API (see secp256k1_context_set_illegal_callback * for that). After this callback returns, anything may happen, including * crashing. * * Args: ctx: an existing context object (cannot be NULL) * In: fun: a pointer to a function to call when an interal error occurs, * taking a message and an opaque pointer (NULL restores a default * handler that calls abort). * data: the opaque pointer to pass to fun above. */ void secp256k1_context_set_error_callback( secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data ) SECP256K1_ARG_NONNULL(1); /** Parse a variable-length public key into the pubkey object. * * Returns: 1 if the public key was fully valid. * 0 if the public key could not be parsed or is invalid. * Args: ctx: a secp256k1 context object. * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a * parsed version of input. If not, its value is undefined. * In: input: pointer to a serialized public key * inputlen: length of the array pointed to by input * * This function supports parsing compressed (33 bytes, header byte 0x02 or * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header * byte 0x06 or 0x07) format public keys. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse( const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Serialize a pubkey object into a serialized byte sequence. * * Returns: 1 always. * Args: ctx: a secp256k1 context object. * Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if * compressed==1) byte array to place the serialized key in. * outputlen: a pointer to an integer which will contain the serialized * size. * In: pubkey: a pointer to a secp256k1_pubkey containing an initialized * public key. * flags: SECP256K1_EC_COMPRESSED if serialization should be in * compressed format. */ int secp256k1_ec_pubkey_serialize( const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Parse a DER ECDSA signature. * * Returns: 1 when the signature could be parsed, 0 otherwise. * Args: ctx: a secp256k1 context object * Out: sig: a pointer to a signature object * In: input: a pointer to the signature to be parsed * inputlen: the length of the array pointed to be input * * Note that this function also supports some violations of DER and even BER. */ int secp256k1_ecdsa_signature_parse_der( const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Serialize an ECDSA signature in DER format. * * Returns: 1 if enough space was available to serialize, 0 otherwise * Args: ctx: a secp256k1 context object * Out: output: a pointer to an array to store the DER serialization * In/Out: outputlen: a pointer to a length integer. Initially, this integer * should be set to the length of output. After the call * it will be set to the length of the serialization (even * if 0 was returned). * In: sig: a pointer to an initialized signature object */ int secp256k1_ecdsa_signature_serialize_der( const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Verify an ECDSA signature. * * Returns: 1: correct signature * 0: incorrect or unparseable signature * Args: ctx: a secp256k1 context object, initialized for verification. * In: sig: the signature being verified (cannot be NULL) * msg32: the 32-byte message hash being verified (cannot be NULL) * pubkey: pointer to an initialized public key to verify with (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function. * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of * extra entropy. */ extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979; /** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */ extern const secp256k1_nonce_function secp256k1_nonce_function_default; /** Create an ECDSA signature. * * Returns: 1: signature created * 0: the nonce generation function failed, or the private key was invalid. * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) * In: msg32: the 32-byte message hash being signed (cannot be NULL) * seckey: pointer to a 32-byte secret key (cannot be NULL) * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) * * The sig always has an s value in the lower half of the range (From 0x1 * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, * inclusive), unlike many other implementations. * * With ECDSA a third-party can can forge a second distinct signature * of the same message given a single initial signature without knowing * the key by setting s to its additive inverse mod-order, 'flipping' the * sign of the random point R which is not included in the signature. * Since the forgery is of the same message this isn't universally * problematic, but in systems where message malleability or uniqueness * of signatures is important this can cause issues. This forgery can be * blocked by all verifiers forcing signers to use a canonical form. The * lower-S form reduces the size of signatures slightly on average when * variable length encodings (such as DER) are used and is cheap to * verify, making it a good choice. Security of always using lower-S is * assured because anyone can trivially modify a signature after the * fact to enforce this property. Adjusting it inside the signing * function avoids the need to re-serialize or have curve specific * constants outside of the library. By always using a canonical form * even in applications where it isn't needed it becomes possible to * impose a requirement later if a need is discovered. * No other forms of ECDSA malleability are known and none seem likely, * but there is no formal proof that ECDSA, even with this additional * restriction, is free of other malleability. Commonly used serialization * schemes will also accept various non-unique encodings, so care should * be taken when this property is required for an application. */ int secp256k1_ecdsa_sign( const secp256k1_context* ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Verify an ECDSA secret key. * * Returns: 1: secret key is valid * 0: secret key is invalid * Args: ctx: pointer to a context object (cannot be NULL) * In: seckey: pointer to a 32-byte secret key (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify( const secp256k1_context* ctx, const unsigned char *seckey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); /** Compute the public key for a secret key. * * Returns: 1: secret was valid, public key stores * 0: secret was invalid, try again * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) * Out: pubkey: pointer to the created public key (cannot be NULL) * In: seckey: pointer to a 32-byte private key (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Export a private key in BER format. * * Returns: 1 if the private key was valid. * Args: ctx: pointer to a context object, initialized for signing (cannot * be NULL) * Out: privkey: pointer to an array for storing the private key in BER. * Should have space for 279 bytes, and cannot be NULL. * privkeylen: Pointer to an int where the length of the private key in * privkey will be stored. * In: seckey: pointer to a 32-byte secret key to export. * flags: SECP256K1_EC_COMPRESSED if the key should be exported in * compressed format. * * This function is purely meant for compatibility with applications that * require BER encoded keys. When working with secp256k1-specific code, the * simple 32-byte private keys are sufficient. * * Note that this function does not guarantee correct DER output. It is * guaranteed to be parsable by secp256k1_ec_privkey_import. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export( const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Import a private key in DER format. * Returns: 1 if a private key was extracted. * Args: ctx: pointer to a context object (cannot be NULL). * Out: seckey: pointer to a 32-byte array for storing the private key. * (cannot be NULL). * In: privkey: pointer to a private key in DER format (cannot be NULL). * privkeylen: length of the DER private key pointed to be privkey. * * This function will accept more than just strict DER, and even allow some BER * violations. The public key stored inside the DER-encoded private key is not * verified for correctness, nor are the curve parameters. Use this function * only if you know in advance it is supposed to contain a secp256k1 private * key. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import( const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a private key by adding tweak to it. * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for * uniformly random 32-byte arrays, or if the resulting private key * would be invalid (only when the tweak is the complement of the * private key). 1 otherwise. * Args: ctx: pointer to a context object (cannot be NULL). * In/Out: seckey: pointer to a 32-byte private key. * In: tweak: pointer to a 32-byte tweak. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by adding tweak times the generator to it. * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for * uniformly random 32-byte arrays, or if the resulting public key * would be invalid (only when the tweak is the complement of the * corresponding private key). 1 otherwise. * Args: ctx: pointer to a context object initialized for validation * (cannot be NULL). * In/Out: pubkey: pointer to a public key object. * In: tweak: pointer to a 32-byte tweak. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a private key by multiplying it by a tweak. * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. * Args: ctx: pointer to a context object (cannot be NULL). * In/Out: seckey: pointer to a 32-byte private key. * In: tweak: pointer to a 32-byte tweak. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by multiplying it by a tweak value. * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. * Args: ctx: pointer to a context object initialized for validation * (cannot be NULL). * In/Out: pubkey: pointer to a public key obkect. * In: tweak: pointer to a 32-byte tweak. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Updates the context randomization. * Returns: 1: randomization successfully updated * 0: error * Args: ctx: pointer to a context object (cannot be NULL) * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( secp256k1_context* ctx, const unsigned char *seed32 ) SECP256K1_ARG_NONNULL(1); /** Add a number of public keys together. * Returns: 1: the sum of the public keys is valid. * 0: the sum of the public keys is not valid. * Args: ctx: pointer to a context object * Out: out: pointer to pubkey for placing the resulting public key * (cannot be NULL) * In: ins: pointer to array of pointers to public keys (cannot be NULL) * n: the number of public keys to add together (must be at least 1) * Use secp256k1_ec_pubkey_compress and secp256k1_ec_pubkey_decompress if the * uncompressed format is needed. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine( const secp256k1_context* ctx, secp256k1_pubkey *out, const secp256k1_pubkey * const * ins, int n ) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); # ifdef __cplusplus } # endif #endif