#!/usr/bin/env python3 # Copyright (c) 2014-2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for skipping signature validation on old blocks. Test logic for skipping signature validation on blocks which we've assumed valid (https://github.com/bitcoin/bitcoin/pull/9484) We build a chain that includes and invalid signature for one of the transactions: 0: genesis block 1: block 1 with coinbase transaction output. 2-101: bury that block with 100 blocks so the coinbase transaction output can be spent 102: a block containing a transaction spending the coinbase transaction output. The transaction has an invalid signature. 103-2202: bury the bad block with just over two weeks' worth of blocks (2100 blocks) Start three nodes: - node0 has no -assumevalid parameter. Try to sync to block 2202. It will reject block 102 and only sync as far as block 101 - node1 has -assumevalid set to the hash of block 102. Try to sync to block 2202. node1 will sync all the way to block 2202. - node2 has -assumevalid set to the hash of block 102. Try to sync to block 200. node2 will reject block 102 since it's assumed valid, but it isn't buried by at least two weeks' work. """ from test_framework.blocktools import ( COINBASE_MATURITY, create_block, create_coinbase, ) from test_framework.messages import ( CBlockHeader, COutPoint, CTransaction, CTxIn, CTxOut, msg_block, msg_headers, ) from test_framework.p2p import P2PInterface from test_framework.script import ( CScript, OP_TRUE, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal from test_framework.wallet_util import generate_keypair class BaseNode(P2PInterface): def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) class AssumeValidTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.rpc_timeout = 120 def setup_network(self): self.add_nodes(3) # Start node0. We don't start the other nodes yet since # we need to pre-mine a block with an invalid transaction # signature so we can pass in the block hash as assumevalid. self.start_node(0) def send_blocks_until_disconnected(self, p2p_conn): """Keep sending blocks to the node until we're disconnected.""" for i in range(len(self.blocks)): if not p2p_conn.is_connected: break try: p2p_conn.send_message(msg_block(self.blocks[i])) except IOError: assert not p2p_conn.is_connected break def run_test(self): # Build the blockchain self.tip = int(self.nodes[0].getbestblockhash(), 16) self.block_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] + 1 self.blocks = [] # Get a pubkey for the coinbase TXO _, coinbase_pubkey = generate_keypair() # Create the first block with a coinbase output to our key height = 1 block = create_block(self.tip, create_coinbase(height, coinbase_pubkey), self.block_time) self.blocks.append(block) self.block_time += 1 block.solve() # Save the coinbase for later self.block1 = block self.tip = block.sha256 height += 1 # Bury the block 100 deep so the coinbase output is spendable for _ in range(100): block = create_block(self.tip, create_coinbase(height), self.block_time) block.solve() self.blocks.append(block) self.tip = block.sha256 self.block_time += 1 height += 1 # Create a transaction spending the coinbase output with an invalid (null) signature tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.block1.vtx[0].sha256, 0), scriptSig=b"")) tx.vout.append(CTxOut(49 * 100000000, CScript([OP_TRUE]))) tx.calc_sha256() block102 = create_block(self.tip, create_coinbase(height), self.block_time, txlist=[tx]) self.block_time += 1 block102.solve() self.blocks.append(block102) self.tip = block102.sha256 self.block_time += 1 height += 1 # Bury the assumed valid block 2100 deep for _ in range(2100): block = create_block(self.tip, create_coinbase(height), self.block_time) block.solve() self.blocks.append(block) self.tip = block.sha256 self.block_time += 1 height += 1 # Start node1 and node2 with assumevalid so they accept a block with a bad signature. self.start_node(1, extra_args=["-assumevalid=" + block102.hash]) self.start_node(2, extra_args=["-assumevalid=" + block102.hash]) p2p0 = self.nodes[0].add_p2p_connection(BaseNode()) p2p0.send_header_for_blocks(self.blocks[0:2000]) p2p0.send_header_for_blocks(self.blocks[2000:]) # Send blocks to node0. Block 102 will be rejected. self.send_blocks_until_disconnected(p2p0) self.wait_until(lambda: self.nodes[0].getblockcount() >= COINBASE_MATURITY + 1) assert_equal(self.nodes[0].getblockcount(), COINBASE_MATURITY + 1) p2p1 = self.nodes[1].add_p2p_connection(BaseNode()) p2p1.send_header_for_blocks(self.blocks[0:2000]) p2p1.send_header_for_blocks(self.blocks[2000:]) # Send all blocks to node1. All blocks will be accepted. for i in range(2202): p2p1.send_message(msg_block(self.blocks[i])) # Syncing 2200 blocks can take a while on slow systems. Give it plenty of time to sync. p2p1.sync_with_ping(timeout=960) assert_equal(self.nodes[1].getblock(self.nodes[1].getbestblockhash())['height'], 2202) p2p2 = self.nodes[2].add_p2p_connection(BaseNode()) p2p2.send_header_for_blocks(self.blocks[0:200]) # Send blocks to node2. Block 102 will be rejected. self.send_blocks_until_disconnected(p2p2) self.wait_until(lambda: self.nodes[2].getblockcount() >= COINBASE_MATURITY + 1) assert_equal(self.nodes[2].getblockcount(), COINBASE_MATURITY + 1) if __name__ == '__main__': AssumeValidTest(__file__).main()