Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
This ensures the allocator is ready no matter when it's needed (as
some STL implementations allocate in constructors -- i.e., MSVC's STL
in debug builds).
Using boost::call_once to guarantee thread-safe static initialization.
Adding some comments describing why the change was made.
Addressing deinitialization of the LockedPageManager object
by initializing it in a local static initializer and adding
an assert in the base's destructor.
Create an allocators.cpp, and move all of the #ifdef WIN32
code and the #include of windows.h into it.
Two motives for this cleanup:
1. I'm getting a weird error in windows.h in my smartfee branch.
2. allocators.h is included (indirectly) just about everywhere, so
this should speed up Windows compiles quite a lot.
As memset() can be optimized out by a compiler it should not be used in
privacy/security relevant code parts. OpenSSL provides the safe
OPENSSL_cleanse() function in crypto.h, which perfectly does the job of
clean and overwrite data.
For details see: http://www.viva64.com/en/b/0178/
- change memset() to OPENSSL_cleanse() where appropriate
- change a hard-coded number from netbase.cpp into a sizeof()
Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
those functions are used naively. In this commit a class "LockedPageManager" is added
that simulates stacking memory locks by keeping a counter per page.