mirror of https://github.com/bitcoin/bitcoin
Merge pull request #71
949c1eb
Split up ecmult and ecmult_gen entirely (Pieter Wuille)
pull/11871/head
commit
b650ab50f7
@ -0,0 +1,17 @@
|
||||
// Copyright (c) 2013-2014 Pieter Wuille
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef _SECP256K1_ECMULT_GEN_
|
||||
#define _SECP256K1_ECMULT_GEN_
|
||||
|
||||
#include "num.h"
|
||||
#include "group.h"
|
||||
|
||||
static void secp256k1_ecmult_gen_start(void);
|
||||
static void secp256k1_ecmult_gen_stop(void);
|
||||
|
||||
/** Multiply with the generator: R = a*G */
|
||||
static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *a);
|
||||
|
||||
#endif
|
@ -0,0 +1,123 @@
|
||||
// Copyright (c) 2013-2014 Pieter Wuille
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
|
||||
#define _SECP256K1_ECMULT_GEN_IMPL_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include "num.h"
|
||||
#include "group.h"
|
||||
#include "ecmult_gen.h"
|
||||
|
||||
typedef struct {
|
||||
// For accelerating the computation of a*G:
|
||||
// To harden against timing attacks, use the following mechanism:
|
||||
// * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
|
||||
// * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
|
||||
// * U_i = U * 2^i (for i=0..62)
|
||||
// * U_i = U * (1-2^63) (for i=63)
|
||||
// where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
|
||||
// For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
|
||||
// precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
|
||||
// None of the resulting prec group elements have a known scalar, and neither do any of
|
||||
// the intermediate sums while computing a*G.
|
||||
// To make memory access uniform, the bytes of prec(i, n_i) are sliced per value of n_i.
|
||||
unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * i * G + U_i)
|
||||
} secp256k1_ecmult_gen_consts_t;
|
||||
|
||||
static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL;
|
||||
|
||||
static void secp256k1_ecmult_gen_start(void) {
|
||||
if (secp256k1_ecmult_gen_consts != NULL)
|
||||
return;
|
||||
|
||||
// Allocate the precomputation table.
|
||||
secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)malloc(sizeof(secp256k1_ecmult_gen_consts_t));
|
||||
|
||||
// get the generator
|
||||
const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
|
||||
secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g);
|
||||
|
||||
// Construct a group element with no known corresponding scalar (nothing up my sleeve).
|
||||
secp256k1_gej_t nums_gej;
|
||||
{
|
||||
static const unsigned char nums_b32[32] = "The scalar for this x is unknown";
|
||||
secp256k1_fe_t nums_x;
|
||||
secp256k1_fe_set_b32(&nums_x, nums_b32);
|
||||
secp256k1_ge_t nums_ge;
|
||||
VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0));
|
||||
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
|
||||
// Add G to make the bits in x uniformly distributed.
|
||||
secp256k1_gej_add_ge(&nums_gej, &nums_gej, g);
|
||||
}
|
||||
|
||||
// compute prec.
|
||||
secp256k1_ge_t prec[1024];
|
||||
{
|
||||
secp256k1_gej_t precj[1024]; // Jacobian versions of prec.
|
||||
int j = 0;
|
||||
secp256k1_gej_t gbase; gbase = gj; // 16^j * G
|
||||
secp256k1_gej_t numsbase; numsbase = nums_gej; // 2^j * nums.
|
||||
for (int j=0; j<64; j++) {
|
||||
// Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase).
|
||||
precj[j*16] = numsbase;
|
||||
for (int i=1; i<16; i++) {
|
||||
secp256k1_gej_add(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase);
|
||||
}
|
||||
// Multiply gbase by 16.
|
||||
for (int i=0; i<4; i++) {
|
||||
secp256k1_gej_double(&gbase, &gbase);
|
||||
}
|
||||
// Multiply numbase by 2.
|
||||
secp256k1_gej_double(&numsbase, &numsbase);
|
||||
if (j == 62) {
|
||||
// In the last iteration, numsbase is (1 - 2^j) * nums instead.
|
||||
secp256k1_gej_neg(&numsbase, &numsbase);
|
||||
secp256k1_gej_add(&numsbase, &numsbase, &nums_gej);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_all_gej(1024, prec, precj);
|
||||
}
|
||||
for (int j=0; j<64; j++) {
|
||||
for (int i=0; i<16; i++) {
|
||||
const unsigned char* raw = (const unsigned char*)(&prec[j*16 + i]);
|
||||
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
|
||||
ret->prec[j][k][i] = raw[k];
|
||||
}
|
||||
}
|
||||
|
||||
// Set the global pointer to the precomputation table.
|
||||
secp256k1_ecmult_gen_consts = ret;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_gen_stop(void) {
|
||||
if (secp256k1_ecmult_gen_consts == NULL)
|
||||
return;
|
||||
|
||||
secp256k1_ecmult_gen_consts_t *c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts;
|
||||
secp256k1_ecmult_gen_consts = NULL;
|
||||
free(c);
|
||||
}
|
||||
|
||||
void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) {
|
||||
secp256k1_num_t n;
|
||||
secp256k1_num_init(&n);
|
||||
secp256k1_num_copy(&n, gn);
|
||||
const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts;
|
||||
secp256k1_gej_set_infinity(r);
|
||||
secp256k1_ge_t add;
|
||||
int bits;
|
||||
for (int j=0; j<64; j++) {
|
||||
bits = secp256k1_num_shift(&n, 4);
|
||||
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
|
||||
((unsigned char*)(&add))[k] = c->prec[j][k][bits];
|
||||
secp256k1_gej_add_ge(r, r, &add);
|
||||
}
|
||||
bits = 0;
|
||||
secp256k1_ge_clear(&add);
|
||||
secp256k1_num_clear(&n);
|
||||
secp256k1_num_free(&n);
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in new issue