Make all Poisson delays use std::chrono types

pull/21015/head
Pieter Wuille 4 years ago committed by Dhruv Mehta
parent c733ac4d8a
commit 55e82881a1

@ -1761,12 +1761,11 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
}
// Initiate network connections
auto start = GetTime<std::chrono::seconds>();
auto start = GetTime<std::chrono::microseconds>();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler = PoissonNextSend(count_microseconds(start), FEELER_INTERVAL);
int64_t nNextExtraBlockRelay = PoissonNextSend(count_microseconds(start), EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
auto next_feeler = PoissonNextSend(start, FEELER_INTERVAL);
auto next_extra_block_relay = PoissonNextSend(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
@ -1849,7 +1848,7 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
}
ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
int64_t nTime = GetTimeMicros();
auto now = GetTime<std::chrono::microseconds>();
bool anchor = false;
bool fFeeler = false;
@ -1861,7 +1860,7 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
// GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
// try opening an additional OUTBOUND_FULL_RELAY connection. If none of
// these conditions are met, check to see if it's time to try an extra
// block-relay-only peer (to confirm our tip is current, see below) or the nNextFeeler
// block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
// timer to decide if we should open a FEELER.
if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
@ -1873,7 +1872,7 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
conn_type = ConnectionType::BLOCK_RELAY;
} else if (GetTryNewOutboundPeer()) {
// OUTBOUND_FULL_RELAY
} else if (nTime > nNextExtraBlockRelay && m_start_extra_block_relay_peers) {
} else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
// Periodically connect to a peer (using regular outbound selection
// methodology from addrman) and stay connected long enough to sync
// headers, but not much else.
@ -1895,10 +1894,10 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
// Because we can promote these connections to block-relay-only
// connections, they do not get their own ConnectionType enum
// (similar to how we deal with extra outbound peers).
nNextExtraBlockRelay = PoissonNextSend(nTime, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
next_extra_block_relay = PoissonNextSend(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
conn_type = ConnectionType::BLOCK_RELAY;
} else if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
} else if (now > next_feeler) {
next_feeler = PoissonNextSend(now, FEELER_INTERVAL);
conn_type = ConnectionType::FEELER;
fFeeler = true;
} else {
@ -2983,20 +2982,21 @@ bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
return found != nullptr && NodeFullyConnected(found) && func(found);
}
int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds)
std::chrono::microseconds CConnman::PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
if (m_next_send_inv_to_incoming < now) {
if (m_next_send_inv_to_incoming.load() < now) {
// If this function were called from multiple threads simultaneously
// it would possible that both update the next send variable, and return a different result to their caller.
// This is not possible in practice as only the net processing thread invokes this function.
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds);
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval);
}
return m_next_send_inv_to_incoming;
}
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
double unscaled = -log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */);
return now + std::chrono::duration_cast<std::chrono::microseconds>(unscaled * average_interval + 0.5us);
}
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const

@ -49,10 +49,10 @@ static const bool DEFAULT_WHITELISTFORCERELAY = false;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** Run the feeler connection loop once every 2 minutes. **/
static constexpr auto FEELER_INTERVAL = 2min;
/** Run the extra block-relay-only connection loop once every 5 minutes. **/
static const int EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 300;
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min;
/** The maximum number of addresses from our addrman to return in response to a getaddr message. */
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
/** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */
@ -573,7 +573,7 @@ public:
/** Minimum fee rate with which to filter inv's to this node */
std::atomic<CAmount> minFeeFilter{0};
CAmount lastSentFeeFilter{0};
int64_t nextSendTimeFeeFilter{0};
std::chrono::microseconds m_next_send_feefilter{0};
};
// m_tx_relay == nullptr if we're not relaying transactions with this peer
@ -1021,7 +1021,7 @@ public:
Works assuming that a single interval is used.
Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
std::chrono::microseconds PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval);
void SetAsmap(std::vector<bool> asmap) { addrman.m_asmap = std::move(asmap); }
@ -1256,7 +1256,7 @@ private:
*/
std::atomic_bool m_start_extra_block_relay_peers{false};
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
std::atomic<std::chrono::microseconds> m_next_send_inv_to_incoming{0us};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
@ -1269,13 +1269,7 @@ private:
};
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
/** Wrapper to return mockable type */
inline std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
return std::chrono::microseconds{PoissonNextSend(now.count(), average_interval.count())};
}
std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval);
/** Dump binary message to file, with timestamp */
void CaptureMessage(const CAddress& addr, const std::string& msg_type, const Span<const unsigned char>& data, bool is_incoming);

@ -119,17 +119,21 @@ static const int MAX_UNCONNECTING_HEADERS = 10;
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
/** Average delay between local address broadcasts */
static constexpr std::chrono::hours AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24};
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL = 24h;
/** Average delay between peer address broadcasts */
static constexpr std::chrono::seconds AVG_ADDRESS_BROADCAST_INTERVAL{30};
/** Average delay between trickled inventory transmissions in seconds.
* Blocks and peers with noban permission bypass this, outbound peers get half this delay. */
static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5;
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL = 30s;
/** Average delay between trickled inventory transmissions for inbound peers.
* Blocks and peers with noban permission bypass this. */
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL = 5s;
/** Average delay between trickled inventory transmissions for outbound peers.
* Use a smaller delay as there is less privacy concern for them.
* Blocks and peers with noban permission bypass this. */
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL = 2s;
/** Maximum rate of inventory items to send per second.
* Limits the impact of low-fee transaction floods. */
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
/** Maximum number of inventory items to send per transmission. */
static constexpr unsigned int INVENTORY_BROADCAST_MAX = INVENTORY_BROADCAST_PER_SECOND * INVENTORY_BROADCAST_INTERVAL;
static constexpr unsigned int INVENTORY_BROADCAST_MAX = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
/** The number of most recently announced transactions a peer can request. */
static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500;
/** Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything typically
@ -138,9 +142,9 @@ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500;
* peers, and random variations in the broadcast mechanism. */
static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low");
/** Average delay between feefilter broadcasts in seconds. */
static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60;
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL = 10min;
/** Maximum feefilter broadcast delay after significant change. */
static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60;
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY = 5min;
/** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
/** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
@ -4669,10 +4673,9 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
if (pto->m_tx_relay->nNextInvSend < current_time) {
fSendTrickle = true;
if (pto->IsInboundConn()) {
pto->m_tx_relay->nNextInvSend = std::chrono::microseconds{m_connman.PoissonNextSendInbound(count_microseconds(current_time), INVENTORY_BROADCAST_INTERVAL)};
pto->m_tx_relay->nNextInvSend = m_connman.PoissonNextSendInbound(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
} else {
// Use half the delay for outbound peers, as there is less privacy concern for them.
pto->m_tx_relay->nNextInvSend = PoissonNextSend(current_time, std::chrono::seconds{INVENTORY_BROADCAST_INTERVAL >> 1});
pto->m_tx_relay->nNextInvSend = PoissonNextSend(current_time, OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
}
}
@ -4927,10 +4930,10 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
if (pto->m_tx_relay->lastSentFeeFilter == MAX_FILTER) {
// Send the current filter if we sent MAX_FILTER previously
// and made it out of IBD.
pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) - 1;
pto->m_tx_relay->m_next_send_feefilter = 0us;
}
}
if (count_microseconds(current_time) > pto->m_tx_relay->nextSendTimeFeeFilter) {
if (current_time > pto->m_tx_relay->m_next_send_feefilter) {
CAmount filterToSend = g_filter_rounder.round(currentFilter);
// We always have a fee filter of at least minRelayTxFee
filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK());
@ -4938,13 +4941,13 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::FEEFILTER, filterToSend));
pto->m_tx_relay->lastSentFeeFilter = filterToSend;
}
pto->m_tx_relay->nextSendTimeFeeFilter = PoissonNextSend(count_microseconds(current_time), AVG_FEEFILTER_BROADCAST_INTERVAL);
pto->m_tx_relay->m_next_send_feefilter = PoissonNextSend(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL);
}
// If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
// until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
else if (count_microseconds(current_time) + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->m_tx_relay->nextSendTimeFeeFilter &&
else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < pto->m_tx_relay->m_next_send_feefilter &&
(currentFilter < 3 * pto->m_tx_relay->lastSentFeeFilter / 4 || currentFilter > 4 * pto->m_tx_relay->lastSentFeeFilter / 3)) {
pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000;
pto->m_tx_relay->m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
}
}
} // release cs_main

@ -104,7 +104,9 @@ FUZZ_TARGET_INIT(connman, initialize_connman)
},
[&] {
// Limit now to int32_t to avoid signed integer overflow
(void)connman.PoissonNextSendInbound(fuzzed_data_provider.ConsumeIntegral<int32_t>(), fuzzed_data_provider.ConsumeIntegral<int>());
(void)connman.PoissonNextSendInbound(
std::chrono::microseconds{fuzzed_data_provider.ConsumeIntegral<int32_t>()},
std::chrono::seconds{fuzzed_data_provider.ConsumeIntegral<int>()});
},
[&] {
CSerializedNetMsg serialized_net_msg;

@ -803,21 +803,6 @@ BOOST_AUTO_TEST_CASE(LocalAddress_BasicLifecycle)
BOOST_CHECK_EQUAL(IsLocal(addr), false);
}
BOOST_AUTO_TEST_CASE(PoissonNextSend)
{
g_mock_deterministic_tests = true;
int64_t now = 5000;
int average_interval_seconds = 600;
auto poisson = ::PoissonNextSend(now, average_interval_seconds);
std::chrono::microseconds poisson_chrono = ::PoissonNextSend(std::chrono::microseconds{now}, std::chrono::seconds{average_interval_seconds});
BOOST_CHECK_EQUAL(poisson, poisson_chrono.count());
g_mock_deterministic_tests = false;
}
std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(const int n_candidates, FastRandomContext& random_context)
{
std::vector<NodeEvictionCandidate> candidates;

@ -26,9 +26,9 @@ void UninterruptibleSleep(const std::chrono::microseconds& n);
* This helper is used to convert durations before passing them over an
* interface that doesn't support std::chrono (e.g. RPC, debug log, or the GUI)
*/
inline int64_t count_seconds(std::chrono::seconds t) { return t.count(); }
inline int64_t count_milliseconds(std::chrono::milliseconds t) { return t.count(); }
inline int64_t count_microseconds(std::chrono::microseconds t) { return t.count(); }
constexpr int64_t count_seconds(std::chrono::seconds t) { return t.count(); }
constexpr int64_t count_milliseconds(std::chrono::milliseconds t) { return t.count(); }
constexpr int64_t count_microseconds(std::chrono::microseconds t) { return t.count(); }
using SecondsDouble = std::chrono::duration<double, std::chrono::seconds::period>;

Loading…
Cancel
Save