diff --git a/src/net_processing.cpp b/src/net_processing.cpp index 02eb3762b13..e0173a73dc6 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -332,6 +332,104 @@ struct Peer { using PeerRef = std::shared_ptr; +/** + * Maintain validation-specific state about nodes, protected by cs_main, instead + * by CNode's own locks. This simplifies asynchronous operation, where + * processing of incoming data is done after the ProcessMessage call returns, + * and we're no longer holding the node's locks. + */ +struct CNodeState { + //! The best known block we know this peer has announced. + const CBlockIndex* pindexBestKnownBlock{nullptr}; + //! The hash of the last unknown block this peer has announced. + uint256 hashLastUnknownBlock{}; + //! The last full block we both have. + const CBlockIndex* pindexLastCommonBlock{nullptr}; + //! The best header we have sent our peer. + const CBlockIndex* pindexBestHeaderSent{nullptr}; + //! Length of current-streak of unconnecting headers announcements + int nUnconnectingHeaders{0}; + //! Whether we've started headers synchronization with this peer. + bool fSyncStarted{false}; + //! When to potentially disconnect peer for stalling headers download + std::chrono::microseconds m_headers_sync_timeout{0us}; + //! Since when we're stalling block download progress (in microseconds), or 0. + std::chrono::microseconds m_stalling_since{0us}; + std::list vBlocksInFlight; + //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty. + std::chrono::microseconds m_downloading_since{0us}; + int nBlocksInFlight{0}; + //! Whether we consider this a preferred download peer. + bool fPreferredDownload{false}; + //! Whether this peer wants invs or headers (when possible) for block announcements. + bool fPreferHeaders{false}; + //! Whether this peer wants invs or cmpctblocks (when possible) for block announcements. + bool fPreferHeaderAndIDs{false}; + /** + * Whether this peer will send us cmpctblocks if we request them. + * This is not used to gate request logic, as we really only care about fSupportsDesiredCmpctVersion, + * but is used as a flag to "lock in" the version of compact blocks (fWantsCmpctWitness) we send. + */ + bool fProvidesHeaderAndIDs{false}; + //! Whether this peer can give us witnesses + bool fHaveWitness{false}; + //! Whether this peer wants witnesses in cmpctblocks/blocktxns + bool fWantsCmpctWitness{false}; + /** + * If we've announced NODE_WITNESS to this peer: whether the peer sends witnesses in cmpctblocks/blocktxns, + * otherwise: whether this peer sends non-witnesses in cmpctblocks/blocktxns. + */ + bool fSupportsDesiredCmpctVersion{false}; + + /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic. + * + * Both are only in effect for outbound, non-manual, non-protected connections. + * Any peer protected (m_protect = true) is not chosen for eviction. A peer is + * marked as protected if all of these are true: + * - its connection type is IsBlockOnlyConn() == false + * - it gave us a valid connecting header + * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet + * - its chain tip has at least as much work as ours + * + * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip, + * set a timeout CHAIN_SYNC_TIMEOUT in the future: + * - If at timeout their best known block now has more work than our tip + * when the timeout was set, then either reset the timeout or clear it + * (after comparing against our current tip's work) + * - If at timeout their best known block still has less work than our + * tip did when the timeout was set, then send a getheaders message, + * and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future. + * If their best known block is still behind when that new timeout is + * reached, disconnect. + * + * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers, + * drop the outbound one that least recently announced us a new block. + */ + struct ChainSyncTimeoutState { + //! A timeout used for checking whether our peer has sufficiently synced + std::chrono::seconds m_timeout{0s}; + //! A header with the work we require on our peer's chain + const CBlockIndex* m_work_header{nullptr}; + //! After timeout is reached, set to true after sending getheaders + bool m_sent_getheaders{false}; + //! Whether this peer is protected from disconnection due to a bad/slow chain + bool m_protect{false}; + }; + + ChainSyncTimeoutState m_chain_sync; + + //! Time of last new block announcement + int64_t m_last_block_announcement{0}; + + //! Whether this peer is an inbound connection + const bool m_is_inbound; + + //! A rolling bloom filter of all announced tx CInvs to this peer. + CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; + + CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {} +}; + class PeerManagerImpl final : public PeerManager { public: @@ -716,103 +814,6 @@ namespace { } // namespace namespace { -/** - * Maintain validation-specific state about nodes, protected by cs_main, instead - * by CNode's own locks. This simplifies asynchronous operation, where - * processing of incoming data is done after the ProcessMessage call returns, - * and we're no longer holding the node's locks. - */ -struct CNodeState { - //! The best known block we know this peer has announced. - const CBlockIndex* pindexBestKnownBlock{nullptr}; - //! The hash of the last unknown block this peer has announced. - uint256 hashLastUnknownBlock{}; - //! The last full block we both have. - const CBlockIndex* pindexLastCommonBlock{nullptr}; - //! The best header we have sent our peer. - const CBlockIndex* pindexBestHeaderSent{nullptr}; - //! Length of current-streak of unconnecting headers announcements - int nUnconnectingHeaders{0}; - //! Whether we've started headers synchronization with this peer. - bool fSyncStarted{false}; - //! When to potentially disconnect peer for stalling headers download - std::chrono::microseconds m_headers_sync_timeout{0us}; - //! Since when we're stalling block download progress (in microseconds), or 0. - std::chrono::microseconds m_stalling_since{0us}; - std::list vBlocksInFlight; - //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty. - std::chrono::microseconds m_downloading_since{0us}; - int nBlocksInFlight{0}; - //! Whether we consider this a preferred download peer. - bool fPreferredDownload{false}; - //! Whether this peer wants invs or headers (when possible) for block announcements. - bool fPreferHeaders{false}; - //! Whether this peer wants invs or cmpctblocks (when possible) for block announcements. - bool fPreferHeaderAndIDs{false}; - /** - * Whether this peer will send us cmpctblocks if we request them. - * This is not used to gate request logic, as we really only care about fSupportsDesiredCmpctVersion, - * but is used as a flag to "lock in" the version of compact blocks (fWantsCmpctWitness) we send. - */ - bool fProvidesHeaderAndIDs{false}; - //! Whether this peer can give us witnesses - bool fHaveWitness{false}; - //! Whether this peer wants witnesses in cmpctblocks/blocktxns - bool fWantsCmpctWitness{false}; - /** - * If we've announced NODE_WITNESS to this peer: whether the peer sends witnesses in cmpctblocks/blocktxns, - * otherwise: whether this peer sends non-witnesses in cmpctblocks/blocktxns. - */ - bool fSupportsDesiredCmpctVersion{false}; - - /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic. - * - * Both are only in effect for outbound, non-manual, non-protected connections. - * Any peer protected (m_protect = true) is not chosen for eviction. A peer is - * marked as protected if all of these are true: - * - its connection type is IsBlockOnlyConn() == false - * - it gave us a valid connecting header - * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet - * - its chain tip has at least as much work as ours - * - * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip, - * set a timeout CHAIN_SYNC_TIMEOUT in the future: - * - If at timeout their best known block now has more work than our tip - * when the timeout was set, then either reset the timeout or clear it - * (after comparing against our current tip's work) - * - If at timeout their best known block still has less work than our - * tip did when the timeout was set, then send a getheaders message, - * and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future. - * If their best known block is still behind when that new timeout is - * reached, disconnect. - * - * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers, - * drop the outbound one that least recently announced us a new block. - */ - struct ChainSyncTimeoutState { - //! A timeout used for checking whether our peer has sufficiently synced - std::chrono::seconds m_timeout{0s}; - //! A header with the work we require on our peer's chain - const CBlockIndex* m_work_header{nullptr}; - //! After timeout is reached, set to true after sending getheaders - bool m_sent_getheaders{false}; - //! Whether this peer is protected from disconnection due to a bad/slow chain - bool m_protect{false}; - }; - - ChainSyncTimeoutState m_chain_sync; - - //! Time of last new block announcement - int64_t m_last_block_announcement{0}; - - //! Whether this peer is an inbound connection - const bool m_is_inbound; - - //! A rolling bloom filter of all announced tx CInvs to this peer. - CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; - - CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {} -}; /** Map maintaining per-node state. */ static std::map mapNodeState GUARDED_BY(cs_main);