Add exhaustive test for group functions on a low-order subgroup

We observe that when changing the b-value in the elliptic curve formula
`y^2 = x^3 + ax + b`, the group law is unchanged. Therefore our functions
for secp256k1 will be correct if and only if they are correct when applied
to the curve defined by `y^2 = x^3 + 4` defined over the same field. This
curve has a point P of order 199.

This commit adds a test which computes the subgroup generated by P and
exhaustively checks that addition of every pair of points gives the correct
result.

Unfortunately we cannot test const-time scalar multiplication by the same
mechanism. The reason is that these ecmult functions both compute a wNAF
representation of the scalar, and this representation is tied to the order
of the group.

Testing with the incomplete version of gej_add_ge (found in 5de4c5dff^)
shows that this detects the incompleteness when adding P - 106P, which
is exactly what we expected since 106 is a cube root of 1 mod 199.
pull/11871/head
Andrew Poelstra 9 years ago
parent 80773a6b74
commit 20b8877be1

1
.gitignore vendored

@ -6,6 +6,7 @@ bench_schnorr_verify
bench_recover
bench_internal
tests
exhaustive_tests
gen_context
*.exe
*.so

@ -87,13 +87,23 @@ bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS = tests
TESTS += tests
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES)
exhaustive_tests_LDADD = $(SECP_LIBS)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
JAVAROOT=src/java
@ -140,6 +150,7 @@ $(gen_context_BIN): $(gen_context_OBJECTS)
$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
$(tests_OBJECTS): src/ecmult_static_context.h
$(exhaustive_tests_OBJECTS): src/ecmult_static_context.h
$(bench_internal_OBJECTS): src/ecmult_static_context.h
src/ecmult_static_context.h: $(gen_context_BIN)

@ -104,6 +104,11 @@ AC_ARG_ENABLE(experimental,
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]),
[use_exhaustive_tests=$enableval],
[use_exhaustive_tests=yes])
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
@ -456,6 +461,7 @@ AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])

@ -7,6 +7,8 @@
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
@ -16,6 +18,15 @@
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_G 4
# else
# define WINDOW_G 2
# endif
#else
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
@ -25,6 +36,7 @@
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))

@ -30,6 +30,8 @@
#error "Please select field implementation"
#endif
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
@ -50,6 +52,9 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);

@ -11,6 +11,18 @@
#include "field.h"
#include "group.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 199
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
);
# else
# error No known generator for the specified exhaustive test group order.
# endif
#else
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
@ -20,6 +32,7 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);
#endif
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
@ -145,9 +158,15 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_set_int(&r->x, 0);
secp256k1_fe_set_int(&r->y, 0);
secp256k1_fe_set_int(&r->z, 0);
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {

@ -0,0 +1,171 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifndef EXHAUSTIVE_TEST_ORDER
#define EXHAUSTIVE_TEST_ORDER 199
#endif
#include "include/secp256k1.h"
#include "group.h"
#include "secp256k1.c"
#include "testrand_impl.h"
/** stolen from tests.c */
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
}
CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
}
void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
secp256k1_fe z2s;
secp256k1_fe u1, u2, s1, s2;
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
}
/* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
secp256k1_fe_sqr(&z2s, &b->z);
secp256k1_fe_mul(&u1, &a->x, &z2s);
u2 = b->x; secp256k1_fe_normalize_weak(&u2);
secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
s2 = b->y; secp256k1_fe_normalize_weak(&s2);
CHECK(secp256k1_fe_equal_var(&u1, &u2));
CHECK(secp256k1_fe_equal_var(&s1, &s2));
}
void random_fe(secp256k1_fe *x) {
unsigned char bin[32];
do {
secp256k1_rand256(bin);
if (secp256k1_fe_set_b32(x, bin)) {
return;
}
} while(1);
}
/** END stolen from tests.c */
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
int i, j;
/* Sanity-check (and check infinity functions) */
CHECK(secp256k1_ge_is_infinity(&group[0]));
CHECK(secp256k1_gej_is_infinity(&groupj[0]));
for (i = 1; i < order; i++) {
CHECK(!secp256k1_ge_is_infinity(&group[i]));
CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
}
/* Check all addition formulae */
for (j = 0; j < order; j++) {
secp256k1_fe fe_inv;
secp256k1_fe_inv(&fe_inv, &groupj[j].z);
for (i = 0; i < order; i++) {
secp256k1_ge zless_gej;
secp256k1_gej tmp;
/* add_var */
secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
ge_equals_gej(&group[(i + j) % order], &tmp);
/* add_ge */
if (j > 0) {
secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
ge_equals_gej(&group[(i + j) % order], &tmp);
}
/* add_ge_var */
secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
ge_equals_gej(&group[(i + j) % order], &tmp);
/* add_zinv_var */
zless_gej.infinity = groupj[j].infinity;
zless_gej.x = groupj[j].x;
zless_gej.y = groupj[j].y;
secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
ge_equals_gej(&group[(i + j) % order], &tmp);
}
}
/* Check doubling */
for (i = 0; i < order; i++) {
secp256k1_gej tmp;
if (i > 0) {
secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
ge_equals_gej(&group[(2 * i) % order], &tmp);
}
secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
ge_equals_gej(&group[(2 * i) % order], &tmp);
}
/* Check negation */
for (i = 1; i < order; i++) {
secp256k1_ge tmp;
secp256k1_gej tmpj;
secp256k1_ge_neg(&tmp, &group[i]);
ge_equals_ge(&group[order - i], &tmp);
secp256k1_gej_neg(&tmpj, &groupj[i]);
ge_equals_gej(&group[order - i], &tmpj);
}
}
void test_exhaustive_ecmult(secp256k1_context *ctx, secp256k1_ge *group, secp256k1_gej *groupj, int order) {
int i, j;
const int r_log = secp256k1_rand32() % order; /* TODO be less biased */
for (j = 0; j < order; j++) {
for (i = 0; i < order; i++) {
secp256k1_gej tmp;
secp256k1_scalar na, ng;
secp256k1_scalar_set_int(&na, i);
secp256k1_scalar_set_int(&ng, j);
secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
/* TODO we cannot exhaustively test ecmult_const as it does a scalar
* negation for even numbers, and our code is not designed to handle
* such a small scalar modulus. */
}
}
}
int main(void) {
int i;
secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
secp256k1_ge group[EXHAUSTIVE_TEST_ORDER];
/* Build context */
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
/* TODO set z = 1, then do num_tests runs with random z values */
/* Generate the entire group */
secp256k1_ge_set_infinity(&group[0]);
secp256k1_gej_set_infinity(&groupj[0]);
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_fe z;
random_fe(&z);
secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
secp256k1_ge_set_gej(&group[i], &groupj[i]);
secp256k1_gej_rescale(&groupj[i], &z);
}
/* Run the tests */
test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
return 0;
}
Loading…
Cancel
Save