@ -463,8 +463,9 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t
static void secp256k1_gej_add_ge ( secp256k1_gej_t * r , const secp256k1_gej_t * a , const secp256k1_ge_t * b ) {
/* Operations: 7 mul, 5 sqr, 5 normalize, 17 mul_int/add/negate/cmov */
static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
secp256k1_fe_t zz , u1 , u2 , s1 , s2 , z , t , m , n , q , rr ;
int infinity ;
secp256k1_fe_t zz , u1 , u2 , s1 , s2 , z , t , tt , m , n , q , rr ;
secp256k1_fe_t m_alt , rr_alt ;
int infinity , degenerate ;
VERIFY_CHECK ( ! b - > infinity ) ;
VERIFY_CHECK ( a - > infinity = = 0 | | a - > infinity = = 1 ) ;
@ -488,6 +489,34 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
* Y3 = 4 * ( R * ( 3 * Q - 2 * R ^ 2 ) - M ^ 4 )
* Z3 = 2 * M * Z
* ( Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead . )
*
* This formula has the benefit of being the same for both addition
* of distinct points and doubling . However , it breaks down in the
* case that either point is infinity , or that y1 = - y2 . We handle
* these cases in the following ways :
*
* - If b is infinity we simply bail by means of a VERIFY_CHECK .
*
* - If a is infinity , we detect this , and at the end of the
* computation replace the result ( which will be meaningless ,
* but we compute to be constant - time ) with b . x : b . y : 1.
*
* - If a = - b , we have y1 = - y2 , which is a degenerate case .
* But here the answer is infinity , so we simply set the
* infinity flag of the result , overriding the computed values
* without even needing to cmov .
*
* - If y1 = - y2 but x1 ! = x2 , which does occur thanks to certain
* properties of our curve ( specifically , 1 has nontrivial cube
* roots in our field , and the curve equation has no x coefficient )
* then the answer is not infinity but also not given by the above
* equation . In this case , we cmov in place an alternate expression
* for lambda . Specifically ( y1 - y2 ) / ( x1 - x2 ) . Where both these
* expressions for lambda are defined , they are equal , and can be
* obtained from each other by multiplication by ( y1 + y2 ) / ( y1 + y2 )
* then substitution of x ^ 3 + 7 for y ^ 2 ( using the curve equation ) .
* For all pairs of nonzero points ( a , b ) at least one is defined ,
* so this covers everything .
*/
secp256k1_fe_sqr ( & zz , & a - > z ) ; /* z = Z1^2 */
@ -499,29 +528,55 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
z = a - > z ; /* z = Z = Z1*Z2 (8) */
t = u1 ; secp256k1_fe_add ( & t , & u2 ) ; /* t = T = U1+U2 (2) */
m = s1 ; secp256k1_fe_add ( & m , & s2 ) ; /* m = M = S1+S2 (2) */
secp256k1_fe_sqr ( & n , & m ) ; /* n = M^2 (1) */
secp256k1_fe_mul ( & q , & n , & t ) ; /* q = Q = T*M^2 (1) */
secp256k1_fe_sqr ( & n , & n ) ; /* n = M^4 (1) */
secp256k1_fe_sqr ( & rr , & t ) ; /* rr = T^2 (1) */
secp256k1_fe_mul ( & t , & u1 , & u2 ) ; secp256k1_fe_negate ( & t , & t , 1 ) ; /* t = -U1*U2 (2) */
secp256k1_fe_add ( & rr , & t ) ; /* rr = R = T^2-U1*U2 (3) */
secp256k1_fe_sqr ( & t , & rr ) ; /* t = R^2 (1) */
secp256k1_fe_mul ( & r - > z , & m , & z ) ; /* r->z = M*Z (1) */
secp256k1_fe_mul ( & tt , & u1 , & u2 ) ; secp256k1_fe_negate ( & tt , & tt , 1 ) ; /* tt = -U1*U2 (2) */
secp256k1_fe_add ( & rr , & tt ) ; /* rr = R = T^2-U1*U2 (3) */
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0 , and this is special - cased later on ) . */
degenerate = secp256k1_fe_normalizes_to_zero ( & m ) &
secp256k1_fe_normalizes_to_zero ( & rr ) ;
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 = = beta * x2 or beta * x1 = = x2 , where beta is
* a nontrivial cube root of one . In either case , an alternate
* non - indeterminate expression for lambda is ( y1 - y2 ) / ( x1 - x2 ) ,
* so we set R / M equal to this . */
secp256k1_fe_negate ( & rr_alt , & s2 , 1 ) ; /* rr = -Y2*Z1^3 */
secp256k1_fe_add ( & rr_alt , & s1 ) ; /* rr = Y1*Z2^3 - Y2*Z1^3 */
secp256k1_fe_negate ( & m_alt , & u2 , 1 ) ; /* m = -X2*Z1^2 */
secp256k1_fe_add ( & m_alt , & u1 ) ; /* m = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_cmov ( & rr_alt , & rr , ! degenerate ) ;
secp256k1_fe_cmov ( & m_alt , & m , ! degenerate ) ;
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda ; R and M represent the explicit
* expressions x1 ^ 2 + x2 ^ 2 + x1x2 and y1 + y2 . */
secp256k1_fe_sqr ( & n , & m_alt ) ; /* n = Malt^2 (1) */
secp256k1_fe_mul ( & q , & n , & t ) ; /* q = Q = T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M ^ 3 * Malt is either Malt ^ 4 ( which is computed by squaring ) , or
* zero ( which is " computed " by cmov ) . So the cost is one squaring
* versus two multiplications . */
secp256k1_fe_sqr ( & n , & n ) ; /* n = M^3 * Malt (1) */
secp256k1_fe_cmov ( & n , & m , degenerate ) ;
secp256k1_fe_normalize_weak ( & n ) ;
secp256k1_fe_sqr ( & t , & rr_alt ) ; /* t = Ralt^2 (1) */
secp256k1_fe_mul ( & r - > z , & m_alt , & z ) ; /* r->z = Malt*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero ( & r - > z ) * ( 1 - a - > infinity ) ;
secp256k1_fe_mul_int ( & r - > z , 2 ) ; /* r->z = Z3 = 2*M*Z (2) */
r - > x = t ; /* r->x = R^2 (1) */
secp256k1_fe_mul_int ( & r - > z , 2 ) ; /* r->z = Z3 = 2*M alt *Z (2) */
r - > x = t ; /* r->x = R alt ^2 (1) */
secp256k1_fe_negate ( & q , & q , 1 ) ; /* q = -Q (2) */
secp256k1_fe_add ( & r - > x , & q ) ; /* r->x = R^2-Q (3) */
secp256k1_fe_add ( & r - > x , & q ) ; /* r->x = R alt ^2-Q (3) */
secp256k1_fe_normalize ( & r - > x ) ;
secp256k1_fe_mul_int ( & q , 3 ) ; /* q = -3*Q (6) */
secp256k1_fe_mul_int ( & t , 2 ) ; /* t = 2*R^2 (2) */
secp256k1_fe_add ( & t , & q ) ; /* t = 2*R^2-3*Q (8) */
secp256k1_fe_mul ( & t , & t , & rr ) ; /* t = R*(2*R^2-3*Q) (1) */
secp256k1_fe_add ( & t , & n ) ; /* t = R*(2*R^2-3*Q)+M^4 (2) */
secp256k1_fe_negate ( & r - > y , & t , 2 ) ; /* r->y = R*(3*Q-2*R^2)-M^4 (3) */
t = r - > x ;
secp256k1_fe_mul_int ( & t , 2 ) ; /* t = 2* x3 (2) */
secp256k1_fe_add ( & t , & q ) ; /* t = 2* x3 - Q: (8) */
secp256k1_fe_mul ( & t , & t , & rr _alt) ; /* t = Ralt*(2*x3 - Q) (1) */
secp256k1_fe_add ( & t , & n ) ; /* t = R alt*(2*x3 - Q) + M^3*Malt (2) */
secp256k1_fe_negate ( & r - > y , & t , 2 ) ; /* r->y = R alt*(Q - 2x3) - M^3*Malt (3) */
secp256k1_fe_normalize_weak ( & r - > y ) ;
secp256k1_fe_mul_int ( & r - > x , 4 ) ; /* r->x = X3 = 4*(R^2-Q) */
secp256k1_fe_mul_int ( & r - > y , 4 ) ; /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */
secp256k1_fe_mul_int ( & r - > x , 4 ) ; /* r->x = X3 = 4*(R alt ^2-Q) */
secp256k1_fe_mul_int ( & r - > y , 4 ) ; /* r->y = Y3 = 4*R alt*(Q - 2x3) - 4*M^3*Malt (4) */
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov ( & r - > x , & b - > x , a - > infinity ) ;