|
|
|
// Copyright (c) 2012-2022 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#ifndef BITCOIN_CHECKQUEUE_H
|
|
|
|
#define BITCOIN_CHECKQUEUE_H
|
|
|
|
|
|
|
|
#include <sync.h>
|
|
|
|
#include <tinyformat.h>
|
|
|
|
#include <util/threadnames.h>
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iterator>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Queue for verifications that have to be performed.
|
|
|
|
* The verifications are represented by a type T, which must provide an
|
|
|
|
* operator(), returning a bool.
|
|
|
|
*
|
|
|
|
* One thread (the master) is assumed to push batches of verifications
|
|
|
|
* onto the queue, where they are processed by N-1 worker threads. When
|
|
|
|
* the master is done adding work, it temporarily joins the worker pool
|
|
|
|
* as an N'th worker, until all jobs are done.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
class CCheckQueue
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
//! Mutex to protect the inner state
|
|
|
|
Mutex m_mutex;
|
|
|
|
|
|
|
|
//! Worker threads block on this when out of work
|
|
|
|
std::condition_variable m_worker_cv;
|
|
|
|
|
|
|
|
//! Master thread blocks on this when out of work
|
|
|
|
std::condition_variable m_master_cv;
|
|
|
|
|
|
|
|
//! The queue of elements to be processed.
|
|
|
|
//! As the order of booleans doesn't matter, it is used as a LIFO (stack)
|
|
|
|
std::vector<T> queue GUARDED_BY(m_mutex);
|
|
|
|
|
|
|
|
//! The number of workers (including the master) that are idle.
|
|
|
|
int nIdle GUARDED_BY(m_mutex){0};
|
|
|
|
|
|
|
|
//! The total number of workers (including the master).
|
|
|
|
int nTotal GUARDED_BY(m_mutex){0};
|
|
|
|
|
|
|
|
//! The temporary evaluation result.
|
|
|
|
bool fAllOk GUARDED_BY(m_mutex){true};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of verifications that haven't completed yet.
|
|
|
|
* This includes elements that are no longer queued, but still in the
|
|
|
|
* worker's own batches.
|
|
|
|
*/
|
|
|
|
unsigned int nTodo GUARDED_BY(m_mutex){0};
|
|
|
|
|
|
|
|
//! The maximum number of elements to be processed in one batch
|
|
|
|
const unsigned int nBatchSize;
|
|
|
|
|
|
|
|
std::vector<std::thread> m_worker_threads;
|
|
|
|
bool m_request_stop GUARDED_BY(m_mutex){false};
|
|
|
|
|
|
|
|
/** Internal function that does bulk of the verification work. */
|
|
|
|
bool Loop(bool fMaster) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
|
|
|
|
{
|
|
|
|
std::condition_variable& cond = fMaster ? m_master_cv : m_worker_cv;
|
|
|
|
std::vector<T> vChecks;
|
|
|
|
vChecks.reserve(nBatchSize);
|
|
|
|
unsigned int nNow = 0;
|
|
|
|
bool fOk = true;
|
|
|
|
do {
|
|
|
|
{
|
|
|
|
WAIT_LOCK(m_mutex, lock);
|
|
|
|
// first do the clean-up of the previous loop run (allowing us to do it in the same critsect)
|
|
|
|
if (nNow) {
|
|
|
|
fAllOk &= fOk;
|
|
|
|
nTodo -= nNow;
|
|
|
|
if (nTodo == 0 && !fMaster)
|
|
|
|
// We processed the last element; inform the master it can exit and return the result
|
|
|
|
m_master_cv.notify_one();
|
|
|
|
} else {
|
|
|
|
// first iteration
|
|
|
|
nTotal++;
|
|
|
|
}
|
|
|
|
// logically, the do loop starts here
|
|
|
|
while (queue.empty() && !m_request_stop) {
|
|
|
|
if (fMaster && nTodo == 0) {
|
|
|
|
nTotal--;
|
|
|
|
bool fRet = fAllOk;
|
|
|
|
// reset the status for new work later
|
|
|
|
fAllOk = true;
|
|
|
|
// return the current status
|
|
|
|
return fRet;
|
|
|
|
}
|
|
|
|
nIdle++;
|
|
|
|
cond.wait(lock); // wait
|
|
|
|
nIdle--;
|
|
|
|
}
|
|
|
|
if (m_request_stop) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decide how many work units to process now.
|
|
|
|
// * Do not try to do everything at once, but aim for increasingly smaller batches so
|
|
|
|
// all workers finish approximately simultaneously.
|
|
|
|
// * Try to account for idle jobs which will instantly start helping.
|
|
|
|
// * Don't do batches smaller than 1 (duh), or larger than nBatchSize.
|
|
|
|
nNow = std::max(1U, std::min(nBatchSize, (unsigned int)queue.size() / (nTotal + nIdle + 1)));
|
|
|
|
auto start_it = queue.end() - nNow;
|
|
|
|
vChecks.assign(std::make_move_iterator(start_it), std::make_move_iterator(queue.end()));
|
|
|
|
queue.erase(start_it, queue.end());
|
|
|
|
// Check whether we need to do work at all
|
|
|
|
fOk = fAllOk;
|
|
|
|
}
|
|
|
|
// execute work
|
|
|
|
for (T& check : vChecks)
|
|
|
|
if (fOk)
|
|
|
|
fOk = check();
|
|
|
|
vChecks.clear();
|
|
|
|
} while (true);
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
//! Mutex to ensure only one concurrent CCheckQueueControl
|
|
|
|
Mutex m_control_mutex;
|
|
|
|
|
|
|
|
//! Create a new check queue
|
|
|
|
explicit CCheckQueue(unsigned int batch_size, int worker_threads_num)
|
|
|
|
: nBatchSize(batch_size)
|
|
|
|
{
|
|
|
|
m_worker_threads.reserve(worker_threads_num);
|
|
|
|
for (int n = 0; n < worker_threads_num; ++n) {
|
|
|
|
m_worker_threads.emplace_back([this, n]() {
|
|
|
|
util::ThreadRename(strprintf("scriptch.%i", n));
|
|
|
|
Loop(false /* worker thread */);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Since this class manages its own resources, which is a thread
|
|
|
|
// pool `m_worker_threads`, copy and move operations are not appropriate.
|
|
|
|
CCheckQueue(const CCheckQueue&) = delete;
|
|
|
|
CCheckQueue& operator=(const CCheckQueue&) = delete;
|
|
|
|
CCheckQueue(CCheckQueue&&) = delete;
|
|
|
|
CCheckQueue& operator=(CCheckQueue&&) = delete;
|
|
|
|
|
|
|
|
//! Wait until execution finishes, and return whether all evaluations were successful.
|
|
|
|
bool Wait() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
|
|
|
|
{
|
|
|
|
return Loop(true /* master thread */);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Add a batch of checks to the queue
|
|
|
|
void Add(std::vector<T>&& vChecks) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
|
|
|
|
{
|
|
|
|
if (vChecks.empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
LOCK(m_mutex);
|
|
|
|
queue.insert(queue.end(), std::make_move_iterator(vChecks.begin()), std::make_move_iterator(vChecks.end()));
|
|
|
|
nTodo += vChecks.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vChecks.size() == 1) {
|
|
|
|
m_worker_cv.notify_one();
|
|
|
|
} else {
|
|
|
|
m_worker_cv.notify_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
~CCheckQueue()
|
|
|
|
{
|
|
|
|
WITH_LOCK(m_mutex, m_request_stop = true);
|
|
|
|
m_worker_cv.notify_all();
|
|
|
|
for (std::thread& t : m_worker_threads) {
|
|
|
|
t.join();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool HasThreads() const { return !m_worker_threads.empty(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* RAII-style controller object for a CCheckQueue that guarantees the passed
|
|
|
|
* queue is finished before continuing.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
class CCheckQueueControl
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
CCheckQueue<T> * const pqueue;
|
|
|
|
bool fDone;
|
|
|
|
|
|
|
|
public:
|
|
|
|
CCheckQueueControl() = delete;
|
|
|
|
CCheckQueueControl(const CCheckQueueControl&) = delete;
|
|
|
|
CCheckQueueControl& operator=(const CCheckQueueControl&) = delete;
|
|
|
|
explicit CCheckQueueControl(CCheckQueue<T> * const pqueueIn) : pqueue(pqueueIn), fDone(false)
|
|
|
|
{
|
|
|
|
// passed queue is supposed to be unused, or nullptr
|
|
|
|
if (pqueue != nullptr) {
|
|
|
|
ENTER_CRITICAL_SECTION(pqueue->m_control_mutex);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Wait()
|
|
|
|
{
|
|
|
|
if (pqueue == nullptr)
|
|
|
|
return true;
|
|
|
|
bool fRet = pqueue->Wait();
|
|
|
|
fDone = true;
|
|
|
|
return fRet;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Add(std::vector<T>&& vChecks)
|
|
|
|
{
|
|
|
|
if (pqueue != nullptr) {
|
|
|
|
pqueue->Add(std::move(vChecks));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
~CCheckQueueControl()
|
|
|
|
{
|
|
|
|
if (!fDone)
|
|
|
|
Wait();
|
|
|
|
if (pqueue != nullptr) {
|
|
|
|
LEAVE_CRITICAL_SECTION(pqueue->m_control_mutex);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // BITCOIN_CHECKQUEUE_H
|