|
|
|
/**********************************************************************
|
|
|
|
* Copyright (c) 2014, 2015 Pieter Wuille *
|
|
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
|
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
/* This file contains code snippets that parse DER private keys with
|
|
|
|
* various errors and violations. This is not a part of the library
|
|
|
|
* itself, because the allowed violations are chosen arbitrarily and
|
|
|
|
* do not follow or establish any standard.
|
|
|
|
*
|
|
|
|
* It also contains code to serialize private keys in a compatible
|
|
|
|
* manner.
|
|
|
|
*
|
|
|
|
* These functions are meant for compatibility with applications
|
|
|
|
* that require BER encoded keys. When working with secp256k1-specific
|
|
|
|
* code, the simple 32-byte private keys normally used by the
|
|
|
|
* library are sufficient.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
|
|
|
|
#define _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
#include <secp256k1.h>
|
|
|
|
|
|
|
|
/** Export a private key in DER format.
|
|
|
|
*
|
|
|
|
* Returns: 1 if the private key was valid.
|
|
|
|
* Args: ctx: pointer to a context object, initialized for signing (cannot
|
|
|
|
* be NULL)
|
|
|
|
* Out: privkey: pointer to an array for storing the private key in BER.
|
|
|
|
* Should have space for 279 bytes, and cannot be NULL.
|
|
|
|
* privkeylen: Pointer to an int where the length of the private key in
|
|
|
|
* privkey will be stored.
|
|
|
|
* In: seckey: pointer to a 32-byte secret key to export.
|
|
|
|
* compressed: 1 if the key should be exported in
|
|
|
|
* compressed format, 0 otherwise
|
|
|
|
*
|
|
|
|
* This function is purely meant for compatibility with applications that
|
|
|
|
* require BER encoded keys. When working with secp256k1-specific code, the
|
|
|
|
* simple 32-byte private keys are sufficient.
|
|
|
|
*
|
|
|
|
* Note that this function does not guarantee correct DER output. It is
|
|
|
|
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
|
|
|
|
*/
|
|
|
|
static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export_der(
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
unsigned char *privkey,
|
|
|
|
size_t *privkeylen,
|
|
|
|
const unsigned char *seckey,
|
|
|
|
int compressed
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
|
|
|
|
|
|
|
/** Import a private key in DER format.
|
|
|
|
* Returns: 1 if a private key was extracted.
|
|
|
|
* Args: ctx: pointer to a context object (cannot be NULL).
|
|
|
|
* Out: seckey: pointer to a 32-byte array for storing the private key.
|
|
|
|
* (cannot be NULL).
|
|
|
|
* In: privkey: pointer to a private key in DER format (cannot be NULL).
|
|
|
|
* privkeylen: length of the DER private key pointed to be privkey.
|
|
|
|
*
|
|
|
|
* This function will accept more than just strict DER, and even allow some BER
|
|
|
|
* violations. The public key stored inside the DER-encoded private key is not
|
|
|
|
* verified for correctness, nor are the curve parameters. Use this function
|
|
|
|
* only if you know in advance it is supposed to contain a secp256k1 private
|
|
|
|
* key.
|
|
|
|
*/
|
|
|
|
static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import_der(
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
unsigned char *seckey,
|
|
|
|
const unsigned char *privkey,
|
|
|
|
size_t privkeylen
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
static int secp256k1_ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
|
|
|
|
const unsigned char *end = privkey + privkeylen;
|
|
|
|
int lenb = 0;
|
|
|
|
int len = 0;
|
|
|
|
memset(out32, 0, 32);
|
|
|
|
/* sequence header */
|
|
|
|
if (end < privkey+1 || *privkey != 0x30) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
privkey++;
|
|
|
|
/* sequence length constructor */
|
|
|
|
if (end < privkey+1 || !(*privkey & 0x80)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
lenb = *privkey & ~0x80; privkey++;
|
|
|
|
if (lenb < 1 || lenb > 2) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (end < privkey+lenb) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* sequence length */
|
|
|
|
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
|
|
|
|
privkey += lenb;
|
|
|
|
if (end < privkey+len) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* sequence element 0: version number (=1) */
|
|
|
|
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
privkey += 3;
|
|
|
|
/* sequence element 1: octet string, up to 32 bytes */
|
|
|
|
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
|
|
|
|
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
|
|
|
|
memset(out32, 0, 32);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int secp256k1_ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
|
|
|
|
secp256k1_pubkey pubkey;
|
|
|
|
size_t pubkeylen = 0;
|
|
|
|
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
|
|
|
|
*privkeylen = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (compressed) {
|
|
|
|
static const unsigned char begin[] = {
|
|
|
|
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
|
|
|
|
};
|
|
|
|
static const unsigned char middle[] = {
|
|
|
|
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
|
|
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
|
|
|
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
|
|
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
|
|
|
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
|
|
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
|
|
|
|
};
|
|
|
|
unsigned char *ptr = privkey;
|
|
|
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
|
|
|
memcpy(ptr, key32, 32); ptr += 32;
|
|
|
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
|
|
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
|
|
|
|
ptr += pubkeylen;
|
|
|
|
*privkeylen = ptr - privkey;
|
|
|
|
} else {
|
|
|
|
static const unsigned char begin[] = {
|
|
|
|
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
|
|
|
|
};
|
|
|
|
static const unsigned char middle[] = {
|
|
|
|
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
|
|
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
|
|
|
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
|
|
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
|
|
|
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
|
|
|
|
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
|
|
|
|
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
|
|
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
|
|
|
|
};
|
|
|
|
unsigned char *ptr = privkey;
|
|
|
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
|
|
|
memcpy(ptr, key32, 32); ptr += 32;
|
|
|
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
|
|
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
|
|
|
|
ptr += pubkeylen;
|
|
|
|
*privkeylen = ptr - privkey;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|