|
|
|
// Copyright (c) 2012-2018 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include <bloom.h>
|
|
|
|
|
|
|
|
#include <primitives/transaction.h>
|
|
|
|
#include <hash.h>
|
|
|
|
#include <script/script.h>
|
|
|
|
#include <script/standard.h>
|
|
|
|
#include <random.h>
|
|
|
|
#include <streams.h>
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
|
|
|
|
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
|
|
|
|
#define LN2 0.6931471805599453094172321214581765680755001343602552
|
|
|
|
|
|
|
|
CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
|
|
|
|
/**
|
|
|
|
* The ideal size for a bloom filter with a given number of elements and false positive rate is:
|
|
|
|
* - nElements * log(fp rate) / ln(2)^2
|
|
|
|
* We ignore filter parameters which will create a bloom filter larger than the protocol limits
|
|
|
|
*/
|
|
|
|
vData(std::min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
|
|
|
|
/**
|
|
|
|
* The ideal number of hash functions is filter size * ln(2) / number of elements
|
|
|
|
* Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
|
|
|
|
* See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
|
|
|
|
*/
|
|
|
|
isFull(false),
|
|
|
|
isEmpty(true),
|
|
|
|
nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
|
|
|
|
nTweak(nTweakIn),
|
|
|
|
nFlags(nFlagsIn)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
|
|
|
|
{
|
|
|
|
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
|
|
|
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::insert(const std::vector<unsigned char>& vKey)
|
|
|
|
{
|
|
|
|
if (isFull)
|
|
|
|
return;
|
|
|
|
for (unsigned int i = 0; i < nHashFuncs; i++)
|
|
|
|
{
|
|
|
|
unsigned int nIndex = Hash(i, vKey);
|
|
|
|
// Sets bit nIndex of vData
|
|
|
|
vData[nIndex >> 3] |= (1 << (7 & nIndex));
|
|
|
|
}
|
|
|
|
isEmpty = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::insert(const COutPoint& outpoint)
|
|
|
|
{
|
|
|
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
|
|
|
|
stream << outpoint;
|
|
|
|
std::vector<unsigned char> data(stream.begin(), stream.end());
|
|
|
|
insert(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::insert(const uint256& hash)
|
|
|
|
{
|
|
|
|
std::vector<unsigned char> data(hash.begin(), hash.end());
|
|
|
|
insert(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CBloomFilter::contains(const std::vector<unsigned char>& vKey) const
|
|
|
|
{
|
|
|
|
if (isFull)
|
|
|
|
return true;
|
|
|
|
if (isEmpty)
|
|
|
|
return false;
|
|
|
|
for (unsigned int i = 0; i < nHashFuncs; i++)
|
|
|
|
{
|
|
|
|
unsigned int nIndex = Hash(i, vKey);
|
|
|
|
// Checks bit nIndex of vData
|
|
|
|
if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CBloomFilter::contains(const COutPoint& outpoint) const
|
|
|
|
{
|
|
|
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
|
|
|
|
stream << outpoint;
|
|
|
|
std::vector<unsigned char> data(stream.begin(), stream.end());
|
|
|
|
return contains(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CBloomFilter::contains(const uint256& hash) const
|
|
|
|
{
|
|
|
|
std::vector<unsigned char> data(hash.begin(), hash.end());
|
|
|
|
return contains(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::clear()
|
|
|
|
{
|
|
|
|
vData.assign(vData.size(),0);
|
|
|
|
isFull = false;
|
|
|
|
isEmpty = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::reset(const unsigned int nNewTweak)
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
nTweak = nNewTweak;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CBloomFilter::IsWithinSizeConstraints() const
|
|
|
|
{
|
|
|
|
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
|
|
|
|
{
|
|
|
|
bool fFound = false;
|
|
|
|
// Match if the filter contains the hash of tx
|
|
|
|
// for finding tx when they appear in a block
|
|
|
|
if (isFull)
|
|
|
|
return true;
|
|
|
|
if (isEmpty)
|
|
|
|
return false;
|
|
|
|
const uint256& hash = tx.GetHash();
|
|
|
|
if (contains(hash))
|
|
|
|
fFound = true;
|
|
|
|
|
|
|
|
for (unsigned int i = 0; i < tx.vout.size(); i++)
|
|
|
|
{
|
|
|
|
const CTxOut& txout = tx.vout[i];
|
|
|
|
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
|
|
|
|
// If this matches, also add the specific output that was matched.
|
|
|
|
// This means clients don't have to update the filter themselves when a new relevant tx
|
|
|
|
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
|
|
|
|
CScript::const_iterator pc = txout.scriptPubKey.begin();
|
|
|
|
std::vector<unsigned char> data;
|
|
|
|
while (pc < txout.scriptPubKey.end())
|
|
|
|
{
|
|
|
|
opcodetype opcode;
|
|
|
|
if (!txout.scriptPubKey.GetOp(pc, opcode, data))
|
|
|
|
break;
|
|
|
|
if (data.size() != 0 && contains(data))
|
|
|
|
{
|
|
|
|
fFound = true;
|
|
|
|
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
|
|
|
|
insert(COutPoint(hash, i));
|
|
|
|
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
|
|
|
|
{
|
|
|
|
std::vector<std::vector<unsigned char> > vSolutions;
|
|
|
|
txnouttype type = Solver(txout.scriptPubKey, vSolutions);
|
|
|
|
if (type == TX_PUBKEY || type == TX_MULTISIG) {
|
|
|
|
insert(COutPoint(hash, i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fFound)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
for (const CTxIn& txin : tx.vin)
|
|
|
|
{
|
|
|
|
// Match if the filter contains an outpoint tx spends
|
|
|
|
if (contains(txin.prevout))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Match if the filter contains any arbitrary script data element in any scriptSig in tx
|
|
|
|
CScript::const_iterator pc = txin.scriptSig.begin();
|
|
|
|
std::vector<unsigned char> data;
|
|
|
|
while (pc < txin.scriptSig.end())
|
|
|
|
{
|
|
|
|
opcodetype opcode;
|
|
|
|
if (!txin.scriptSig.GetOp(pc, opcode, data))
|
|
|
|
break;
|
|
|
|
if (data.size() != 0 && contains(data))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CBloomFilter::UpdateEmptyFull()
|
|
|
|
{
|
|
|
|
bool full = true;
|
|
|
|
bool empty = true;
|
|
|
|
for (unsigned int i = 0; i < vData.size(); i++)
|
|
|
|
{
|
|
|
|
full &= vData[i] == 0xff;
|
|
|
|
empty &= vData[i] == 0;
|
|
|
|
}
|
|
|
|
isFull = full;
|
|
|
|
isEmpty = empty;
|
|
|
|
}
|
|
|
|
|
|
|
|
CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
|
|
|
|
{
|
|
|
|
double logFpRate = log(fpRate);
|
|
|
|
/* The optimal number of hash functions is log(fpRate) / log(0.5), but
|
|
|
|
* restrict it to the range 1-50. */
|
|
|
|
nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
|
|
|
|
/* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
|
|
|
|
nEntriesPerGeneration = (nElements + 1) / 2;
|
|
|
|
uint32_t nMaxElements = nEntriesPerGeneration * 3;
|
|
|
|
/* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
|
|
|
|
* => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
|
|
|
|
* => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
|
|
|
|
* => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
|
|
|
|
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
|
|
|
|
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
|
|
|
|
*/
|
|
|
|
uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
|
|
|
|
data.clear();
|
|
|
|
/* For each data element we need to store 2 bits. If both bits are 0, the
|
|
|
|
* bit is treated as unset. If the bits are (01), (10), or (11), the bit is
|
|
|
|
* treated as set in generation 1, 2, or 3 respectively.
|
|
|
|
* These bits are stored in separate integers: position P corresponds to bit
|
|
|
|
* (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
|
|
|
|
data.resize(((nFilterBits + 63) / 64) << 1);
|
|
|
|
reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Similar to CBloomFilter::Hash */
|
|
|
|
static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, const std::vector<unsigned char>& vDataToHash) {
|
|
|
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
|
|
|
|
}
|
|
|
|
|
replace modulus with FastMod
Replaces the slow modulo operation with a much faster 32bit multiplication & shift. This works
because the hash should be uniformly distributed between 0 and 2^32-1. This speeds up the benchmark
by a factor of about 1.3:
RollingBloom, 5, 1500000, 3.73733, 4.97569e-07, 4.99002e-07, 4.98372e-07 # before
RollingBloom, 5, 1500000, 2.86842, 3.81630e-07, 3.83730e-07, 3.82473e-07 # FastMod
Be aware that this changes the position of the bits that are toggled, so this should probably
not be used for CBloomFilter which is serialized.
7 years ago
|
|
|
|
|
|
|
// A replacement for x % n. This assumes that x and n are 32bit integers, and x is a uniformly random distributed 32bit value
|
|
|
|
// which should be the case for a good hash.
|
|
|
|
// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
|
|
|
static inline uint32_t FastMod(uint32_t x, size_t n) {
|
|
|
|
return ((uint64_t)x * (uint64_t)n) >> 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
|
|
|
|
{
|
|
|
|
if (nEntriesThisGeneration == nEntriesPerGeneration) {
|
|
|
|
nEntriesThisGeneration = 0;
|
|
|
|
nGeneration++;
|
|
|
|
if (nGeneration == 4) {
|
|
|
|
nGeneration = 1;
|
|
|
|
}
|
|
|
|
uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
|
|
|
|
uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
|
|
|
|
/* Wipe old entries that used this generation number. */
|
|
|
|
for (uint32_t p = 0; p < data.size(); p += 2) {
|
|
|
|
uint64_t p1 = data[p], p2 = data[p + 1];
|
|
|
|
uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
|
|
|
|
data[p] = p1 & mask;
|
|
|
|
data[p + 1] = p2 & mask;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nEntriesThisGeneration++;
|
|
|
|
|
|
|
|
for (int n = 0; n < nHashFuncs; n++) {
|
|
|
|
uint32_t h = RollingBloomHash(n, nTweak, vKey);
|
|
|
|
int bit = h & 0x3F;
|
replace modulus with FastMod
Replaces the slow modulo operation with a much faster 32bit multiplication & shift. This works
because the hash should be uniformly distributed between 0 and 2^32-1. This speeds up the benchmark
by a factor of about 1.3:
RollingBloom, 5, 1500000, 3.73733, 4.97569e-07, 4.99002e-07, 4.98372e-07 # before
RollingBloom, 5, 1500000, 2.86842, 3.81630e-07, 3.83730e-07, 3.82473e-07 # FastMod
Be aware that this changes the position of the bits that are toggled, so this should probably
not be used for CBloomFilter which is serialized.
7 years ago
|
|
|
/* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
|
|
|
|
uint32_t pos = FastMod(h, data.size());
|
|
|
|
/* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
|
|
|
|
data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
|
|
|
|
data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CRollingBloomFilter::insert(const uint256& hash)
|
|
|
|
{
|
|
|
|
std::vector<unsigned char> vData(hash.begin(), hash.end());
|
|
|
|
insert(vData);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
|
|
|
|
{
|
|
|
|
for (int n = 0; n < nHashFuncs; n++) {
|
|
|
|
uint32_t h = RollingBloomHash(n, nTweak, vKey);
|
|
|
|
int bit = h & 0x3F;
|
replace modulus with FastMod
Replaces the slow modulo operation with a much faster 32bit multiplication & shift. This works
because the hash should be uniformly distributed between 0 and 2^32-1. This speeds up the benchmark
by a factor of about 1.3:
RollingBloom, 5, 1500000, 3.73733, 4.97569e-07, 4.99002e-07, 4.98372e-07 # before
RollingBloom, 5, 1500000, 2.86842, 3.81630e-07, 3.83730e-07, 3.82473e-07 # FastMod
Be aware that this changes the position of the bits that are toggled, so this should probably
not be used for CBloomFilter which is serialized.
7 years ago
|
|
|
uint32_t pos = FastMod(h, data.size());
|
|
|
|
/* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
|
|
|
|
if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CRollingBloomFilter::contains(const uint256& hash) const
|
|
|
|
{
|
|
|
|
std::vector<unsigned char> vData(hash.begin(), hash.end());
|
|
|
|
return contains(vData);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CRollingBloomFilter::reset()
|
|
|
|
{
|
|
|
|
nTweak = GetRand(std::numeric_limits<unsigned int>::max());
|
|
|
|
nEntriesThisGeneration = 0;
|
|
|
|
nGeneration = 1;
|
|
|
|
for (std::vector<uint64_t>::iterator it = data.begin(); it != data.end(); it++) {
|
|
|
|
*it = 0;
|
|
|
|
}
|
|
|
|
}
|