|
|
|
#ifndef _SECP256K1_GROUP_
|
|
|
|
#define _SECP256K1_GROUP_
|
|
|
|
|
|
|
|
#include "field.h"
|
|
|
|
|
|
|
|
namespace secp256k1 {
|
|
|
|
|
|
|
|
class GroupElemJac;
|
|
|
|
|
|
|
|
/** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */
|
|
|
|
class GroupElem {
|
|
|
|
protected:
|
|
|
|
bool fInfinity;
|
|
|
|
FieldElem x;
|
|
|
|
FieldElem y;
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
/** Creates the point at infinity */
|
|
|
|
GroupElem() {
|
|
|
|
fInfinity = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Creates the point with given affine coordinates */
|
|
|
|
GroupElem(const FieldElem &xin, const FieldElem &yin) {
|
|
|
|
fInfinity = false;
|
|
|
|
x = xin;
|
|
|
|
y = yin;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Checks whether this is the point at infinity */
|
|
|
|
bool IsInfinity() const {
|
|
|
|
return fInfinity;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetNeg(const GroupElem &p) {
|
|
|
|
*this = p;
|
|
|
|
y.Normalize();
|
|
|
|
y.SetNeg(y, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetX(FieldElem &xout) const {
|
|
|
|
xout = x;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetY(FieldElem &yout) const {
|
|
|
|
yout = y;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ToString() const {
|
|
|
|
if (fInfinity)
|
|
|
|
return "(inf)";
|
|
|
|
FieldElem xc = x, yc = y;
|
|
|
|
return "(" + xc.ToString() + "," + yc.ToString() + ")";
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetJac(GroupElemJac &jac);
|
|
|
|
|
|
|
|
friend class GroupElemJac;
|
|
|
|
};
|
|
|
|
|
|
|
|
/** Represents a point on the secp256k1 curve, with jacobian coordinates */
|
|
|
|
class GroupElemJac : private GroupElem {
|
|
|
|
protected:
|
|
|
|
FieldElem z;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** Creates the point at infinity */
|
|
|
|
GroupElemJac() : GroupElem(), z(1) {}
|
|
|
|
|
|
|
|
/** Creates the point with given affine coordinates */
|
|
|
|
GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {}
|
|
|
|
|
|
|
|
GroupElemJac(const GroupElem &in) : GroupElem(in), z(1) {}
|
|
|
|
|
|
|
|
void SetJac(GroupElemJac &jac) {
|
|
|
|
*this = jac;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Checks whether this is a non-infinite point on the curve */
|
|
|
|
bool IsValid() {
|
|
|
|
if (IsInfinity())
|
|
|
|
return false;
|
|
|
|
// y^2 = x^3 + 7
|
|
|
|
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
|
|
|
|
// Y^2 / Z^6 = X^3 / Z^6 + 7
|
|
|
|
// Y^2 = X^3 + 7*Z^6
|
|
|
|
FieldElem y2; y2.SetSquare(y);
|
|
|
|
FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x);
|
|
|
|
FieldElem z2; z2.SetSquare(z);
|
|
|
|
FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
|
|
|
|
z6 *= 7;
|
|
|
|
x3 += z6;
|
|
|
|
return y2 == x3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the affine coordinates of this point */
|
|
|
|
void GetAffine(GroupElem &aff) {
|
|
|
|
z.SetInverse(z);
|
|
|
|
FieldElem z2;
|
|
|
|
z2.SetSquare(z);
|
|
|
|
FieldElem z3;
|
|
|
|
z3.SetMult(z,z2);
|
|
|
|
x.SetMult(x,z2);
|
|
|
|
y.SetMult(y,z3);
|
|
|
|
z = FieldElem(1);
|
|
|
|
aff.fInfinity = fInfinity;
|
|
|
|
aff.x = x;
|
|
|
|
aff.y = y;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetX(FieldElem &xout) {
|
|
|
|
FieldElem zi;
|
|
|
|
zi.SetInverse(z);
|
|
|
|
zi.SetSquare(zi);
|
|
|
|
xout.SetMult(x, zi);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsInfinity() const {
|
|
|
|
return fInfinity;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetY(FieldElem &yout) {
|
|
|
|
FieldElem zi;
|
|
|
|
zi.SetInverse(z);
|
|
|
|
FieldElem zi3; zi3.SetSquare(zi); zi3.SetMult(zi, zi3);
|
|
|
|
yout.SetMult(y, zi3);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetNeg(const GroupElemJac &p) {
|
|
|
|
*this = p;
|
|
|
|
y.Normalize();
|
|
|
|
y.SetNeg(y, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Sets this point to have a given X coordinate & given Y oddness */
|
|
|
|
void SetCompressed(const FieldElem &xin, bool fOdd) {
|
|
|
|
x = xin;
|
|
|
|
FieldElem x2; x2.SetSquare(x);
|
|
|
|
FieldElem x3; x3.SetMult(x,x2);
|
|
|
|
fInfinity = false;
|
|
|
|
FieldElem c(7);
|
|
|
|
c += x3;
|
|
|
|
y.SetSquareRoot(c);
|
|
|
|
z = FieldElem(1);
|
|
|
|
if (y.IsOdd() != fOdd)
|
|
|
|
y.SetNeg(y,1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Sets this point to be the EC double of another */
|
|
|
|
void SetDouble(const GroupElemJac &p) {
|
|
|
|
FieldElem t5 = p.y;
|
|
|
|
if (p.fInfinity || t5.IsZero()) {
|
|
|
|
fInfinity = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
FieldElem t1,t2,t3,t4;
|
|
|
|
z.SetMult(t5,p.z);
|
|
|
|
z *= 2; // Z' = 2*Y*Z (2)
|
|
|
|
t1.SetSquare(p.x);
|
|
|
|
t1 *= 3; // T1 = 3*X^2 (3)
|
|
|
|
t2.SetSquare(t1); // T2 = 9*X^4 (1)
|
|
|
|
t3.SetSquare(t5);
|
|
|
|
t3 *= 2; // T3 = 2*Y^2 (2)
|
|
|
|
t4.SetSquare(t3);
|
|
|
|
t4 *= 2; // T4 = 8*Y^4 (2)
|
|
|
|
t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1)
|
|
|
|
x = t3;
|
|
|
|
x *= 4; // X' = 8*X*Y^2 (4)
|
|
|
|
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
|
|
|
|
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
|
|
|
|
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
|
|
|
|
t3 *= 6; // T3 = 12*X*Y^2 (6)
|
|
|
|
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
|
|
|
|
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
|
|
|
|
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
|
|
|
|
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
|
|
|
|
fInfinity = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Sets this point to be the EC addition of two others */
|
|
|
|
void SetAdd(const GroupElemJac &p, const GroupElemJac &q) {
|
|
|
|
if (p.fInfinity) {
|
|
|
|
*this = q;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (q.fInfinity) {
|
|
|
|
*this = p;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
fInfinity = false;
|
|
|
|
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
|
|
|
|
FieldElem z22; z22.SetSquare(z2);
|
|
|
|
FieldElem z12; z12.SetSquare(z1);
|
|
|
|
FieldElem u1; u1.SetMult(x1, z22);
|
|
|
|
FieldElem u2; u2.SetMult(x2, z12);
|
|
|
|
FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
|
|
|
|
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
|
|
|
if (u1 == u2) {
|
|
|
|
if (s1 == s2) {
|
|
|
|
SetDouble(p);
|
|
|
|
} else {
|
|
|
|
fInfinity = true;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
FieldElem h; h.SetNeg(u1,1); h += u2;
|
|
|
|
FieldElem r; r.SetNeg(s1,1); r += s2;
|
|
|
|
FieldElem r2; r2.SetSquare(r);
|
|
|
|
FieldElem h2; h2.SetSquare(h);
|
|
|
|
FieldElem h3; h3.SetMult(h,h2);
|
|
|
|
z.SetMult(z1,z2); z.SetMult(z, h);
|
|
|
|
FieldElem t; t.SetMult(u1,h2);
|
|
|
|
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
|
|
|
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
|
|
|
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
|
|
|
y += h3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */
|
|
|
|
void SetAdd(const GroupElemJac &p, const GroupElem &q) {
|
|
|
|
if (p.fInfinity) {
|
|
|
|
x = q.x;
|
|
|
|
y = q.y;
|
|
|
|
fInfinity = q.fInfinity;
|
|
|
|
z = FieldElem(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (q.fInfinity) {
|
|
|
|
*this = p;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
fInfinity = false;
|
|
|
|
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y;
|
|
|
|
FieldElem z12; z12.SetSquare(z1);
|
|
|
|
FieldElem u1 = x1; u1.Normalize();
|
|
|
|
FieldElem u2; u2.SetMult(x2, z12);
|
|
|
|
FieldElem s1 = y1; s1.Normalize();
|
|
|
|
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
|
|
|
if (u1 == u2) {
|
|
|
|
if (s1 == s2) {
|
|
|
|
SetDouble(p);
|
|
|
|
} else {
|
|
|
|
fInfinity = true;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
FieldElem h; h.SetNeg(u1,1); h += u2;
|
|
|
|
FieldElem r; r.SetNeg(s1,1); r += s2;
|
|
|
|
FieldElem r2; r2.SetSquare(r);
|
|
|
|
FieldElem h2; h2.SetSquare(h);
|
|
|
|
FieldElem h3; h3.SetMult(h,h2);
|
|
|
|
z = p.z; z.SetMult(z, h);
|
|
|
|
FieldElem t; t.SetMult(u1,h2);
|
|
|
|
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
|
|
|
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
|
|
|
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
|
|
|
y += h3;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ToString() const {
|
|
|
|
GroupElemJac cop = *this;
|
|
|
|
GroupElem aff;
|
|
|
|
cop.GetAffine(aff);
|
|
|
|
return aff.ToString();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetMulLambda(const GroupElemJac &p);
|
|
|
|
};
|
|
|
|
|
|
|
|
void GroupElem::SetJac(GroupElemJac &jac) {
|
|
|
|
jac.GetAffine(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const unsigned char order_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
|
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
|
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41};
|
|
|
|
|
|
|
|
static const unsigned char g_x_[] = {0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,
|
|
|
|
0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07,
|
|
|
|
0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,
|
|
|
|
0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98};
|
|
|
|
|
|
|
|
static const unsigned char g_y_[] = {0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,
|
|
|
|
0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8,
|
|
|
|
0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,
|
|
|
|
0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8};
|
|
|
|
|
|
|
|
// properties of secp256k1's efficiently computable endomorphism
|
|
|
|
static const unsigned char lambda_[] = {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,
|
|
|
|
0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
|
|
|
|
0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,
|
|
|
|
0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72};
|
|
|
|
static const unsigned char beta_[] = {0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10,
|
|
|
|
0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9,
|
|
|
|
0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95,
|
|
|
|
0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee};
|
|
|
|
static const unsigned char a1b2_[] = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,
|
|
|
|
0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15};
|
|
|
|
static const unsigned char b1_[] = {0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,
|
|
|
|
0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3};
|
|
|
|
static const unsigned char a2_[] = {0x01,
|
|
|
|
0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,
|
|
|
|
0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8};
|
|
|
|
class GroupConstants {
|
|
|
|
private:
|
|
|
|
Context ctx;
|
|
|
|
const FieldElem g_x;
|
|
|
|
const FieldElem g_y;
|
|
|
|
|
|
|
|
public:
|
|
|
|
const Number order;
|
|
|
|
const GroupElem g;
|
|
|
|
const FieldElem beta;
|
|
|
|
const Number lambda, a1b2, b1, a2;
|
|
|
|
|
|
|
|
GroupConstants() : order(ctx, order_, sizeof(order_)),
|
|
|
|
g_x(g_x_), g_y(g_y_), g(g_x,g_y),
|
|
|
|
beta(beta_),
|
|
|
|
lambda(ctx, lambda_, sizeof(lambda_)),
|
|
|
|
a1b2(ctx, a1b2_, sizeof(a1b2_)),
|
|
|
|
b1(ctx, b1_, sizeof(b1_)),
|
|
|
|
a2(ctx, a2_, sizeof(a2_)) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
const GroupConstants &GetGroupConst() {
|
|
|
|
static const GroupConstants group_const;
|
|
|
|
return group_const;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GroupElemJac::SetMulLambda(const GroupElemJac &p) {
|
|
|
|
FieldElem beta = GetGroupConst().beta;
|
|
|
|
*this = p;
|
|
|
|
x.SetMult(x, beta);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SplitExp(Context &ctx, const Number &exp, Number &exp1, Number &exp2) {
|
|
|
|
const GroupConstants &c = GetGroupConst();
|
|
|
|
Context ct(ctx);
|
|
|
|
Number bnc1(ct), bnc2(ct), bnt1(ct), bnt2(ct), bnn2(ct);
|
|
|
|
bnn2.SetNumber(c.order);
|
|
|
|
bnn2.Shift1();
|
|
|
|
|
|
|
|
bnc1.SetMult(ct, exp, c.a1b2);
|
|
|
|
bnc1.SetAdd(ct, bnc1, bnn2);
|
|
|
|
bnc1.SetDiv(ct, bnc1, c.order);
|
|
|
|
|
|
|
|
bnc2.SetMult(ct, exp, c.b1);
|
|
|
|
bnc2.SetAdd(ct, bnc2, bnn2);
|
|
|
|
bnc2.SetDiv(ct, bnc2, c.order);
|
|
|
|
|
|
|
|
bnt1.SetMult(ct, bnc1, c.a1b2);
|
|
|
|
bnt2.SetMult(ct, bnc2, c.a2);
|
|
|
|
bnt1.SetAdd(ct, bnt1, bnt2);
|
|
|
|
exp1.SetSub(ct, exp, bnt1);
|
|
|
|
bnt1.SetMult(ct, bnc1, c.b1);
|
|
|
|
bnt2.SetMult(ct, bnc2, c.a1b2);
|
|
|
|
exp2.SetSub(ct, bnt1, bnt2);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|