version : '{branch}.{build}'
skip_tags : true
image : Previous Visual Studio 2019
configuration : Release
platform : x64
clone_depth : 5
environment :
PATH : 'C:\Python37-x64;C:\Python37-x64\Scripts;%PATH%'
PYTHONUTF8 : 1
QT_DOWNLOAD_URL : 'https://github.com/sipsorcery/qt_win_binary/releases/download/v1.6/Qt5.9.8_x64_static_vs2019.zip'
QT_DOWNLOAD_HASH : '9a8c6eb20967873785057fdcd329a657c7f922b0af08c5fde105cc597dd37e21'
QT_LOCAL_PATH : 'C:\Qt5.9.8_x64_static_vs2019'
VCPKG_INSTALL_PATH : 'C:\tools\vcpkg\installed'
VCPKG_COMMIT_ID : '40230b8e3f6368dcb398d649331be878ca1e9007'
install :
# Disable zmq test for now since python zmq library on Windows would cause Access violation sometimes.
# - cmd: pip install zmq
# Powershell block below is to install the c++ dependencies via vcpkg. The pseudo code is:
# a. Checkout the vcpkg source (including port files) for the specific checkout and build the vcpkg binary,
# b. Install the missing packages using the vcpkg manifest.
- ps : |
cd c:\tools\vcpkg
$env:GIT_REDIRECT_STDERR = '2>&1' # git is writing non-errors to STDERR when doing git pull. Send to STDOUT instead.
git pull origin master > $null
git -c advice.detachedHead=false checkout $env:VCPKG_COMMIT_ID
.\bootstrap-vcpkg.bat > $null
cd "$env:APPVEYOR_BUILD_FOLDER"
before_build :
# Powershell block below is to download and extract the Qt static libraries. The pseudo code is:
# a. Download the zip file with the prebuilt Qt static libraries.
# b. Check that the downloaded file matches the expected hash.
# c. Extract the zip file to the specific destination path expected by the msbuild projects.
- ps : |
Write-Host "Downloading Qt binaries.";
Invoke-WebRequest -Uri $env:QT_DOWNLOAD_URL -Out qtdownload.zip;
Write-Host "Qt binaries successfully downloaded, checking hash against $env:QT_DOWNLOAD_HASH...";
if((Get-FileHash qtdownload.zip).Hash -eq $env:QT_DOWNLOAD_HASH) {
Expand-Archive qtdownload.zip -DestinationPath $env:QT_LOCAL_PATH;
Write-Host "Qt binary download matched the expected hash.";
}
else {
Write-Host "ERROR: Qt binary download did not match the expected hash.";
Exit-AppveyorBuild;
}
- cmd : python build_msvc\msvc-autogen.py
build_script :
- cmd : msbuild /p:TrackFileAccess=false build_msvc\bitcoin.sln /m /v:q /nologo
after_build :
#- 7z a bitcoin-%APPVEYOR_BUILD_VERSION%.zip %APPVEYOR_BUILD_FOLDER%\build_msvc\%platform%\%configuration%\*.exe
test_script :
- cmd : src\test_bitcoin.exe -l test_suite
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
4 years ago
- cmd : src\bench_bitcoin.exe > NUL
- ps : python test\util\bitcoin-util-test.py
- cmd : python test\util\rpcauth-test.py
# Fee estimation test failing on appveyor with: WinError 10048] Only one usage of each socket address (protocol/network address/port) is normally permitted.
# functional tests disabled for now. See
# https://github.com/bitcoin/bitcoin/pull/18626#issuecomment-613396202
# https://github.com/bitcoin/bitcoin/issues/18623
# - cmd: python test\functional\test_runner.py --ci --quiet --combinedlogslen=4000 --failfast --exclude feature_fee_estimation
artifacts :
#- path: bitcoin-%APPVEYOR_BUILD_VERSION%.zip
deploy : off